Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 23(3): 1258-1281, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27387228

RESUMO

A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach.


Assuntos
Mudança Climática , Solanum tuberosum , Biomassa , Bolívia , Dinamarca , Modelos Teóricos , Washington
2.
J Environ Manage ; 181: 26-35, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27300290

RESUMO

Over many years, high phosphorus (P) loading for intensive vegetable cropping in greenhouses of North China has contributed to excessive P accumulation, resulting in environmental risk. In this study, the influences of manure and nitrogen (N) application on the transformation and transport of soil P were investigated after nine years in a greenhouse tomato double cropping system (winter-spring and autumn-winter seasons). High loading of manure significantly increased the soil inorganic P (Pi), inositol hexakisphosphate (IHP), mobile P and P saturation ratio (PSR, >0.7 in 0-30 cm depth soil; PSR was estimated from P/(Fe + Al) in an oxalate extract of the soil). The high rate of N fertilizer application to the studied calcareous soil with heavy loading of manure increased the following: (i) mobile organic P (Po) and Pi fractions, as evidenced by the decrease in the ratio of monoesters to diesters and the proportion of stable Pi (i.e., HCl-Pi) in total P (Pt) in 0-30 cm depth soil; (ii) relative distribution of Po in the subsoil layer; and (iii) P leaching to soil depths below 90 cm and the proportion of Po in Pt in the leachate. More acidic soil due to excessive N application increased P mobility and leaching. The increase in Ox-Al (oxalate-extractable Al) and the proportion of microbe-associated Po related to N application at soil depths of 0-30 cm suggested decrease in the net Po mineralization, which may contribute to downward transport of Po in the soil profile.


Assuntos
Esterco , Nitrogênio/química , Fósforo/química , Solo/química , China , Produtos Agrícolas , Humanos , Verduras
3.
Artigo em Inglês | MEDLINE | ID: mdl-24967564

RESUMO

Heavy metals are potentially toxic to human life and the environment. Metal toxicity depends on chemical associations in soil. Understanding the chemical association of trace elements in soils amended with biosolids is very important since it determines their availability within rhizosphere and mobility beyond the rhizosphere. A sequential extraction method was used to determine the various chemical associations [labile (exchangeable + sorbed), organic, carbonates, and sulfides] of Cu, Zn, Cd, Cr, and Pb at the end of sorghum-sudan grass growth (65d) in Candler fine sand (pH = 6.8) and in Ogeechee loamy sand (pH = 5.2) amended with wastewater treatment sludge (WWTS) obtained from two different sources at application rates of 0, 24.7, 49.4, 98.8, and 148.2 Mg ha(-1). Results of this study indicated that irrespective of the soil type, Cu, Cd, Cr, and Pb in the labile fractions (exchangeable + sorbed) were in the range of 0-3.0 mg kg(-1) and the amount for Zn was in the range of 0.2-6.6 mg kg(-1). Therefore, their availability to plants and mobility beyond rhizosphere would be substantially low unless further transformations occur from other fractions. Results also indicated that the presence of substantial amounts of trace elements studied were in sulfide (HNO3) fraction and in organic (NaOH) fraction irrespective of soil type with the exception of Pb which was mainly present as carbonate (Na2EDTA) fraction and the remaining Pb equally as sulfide (HNO3) and organic (NaOH) fractions. Furthermore, results indicated that Cd was mainly present as carbonate (Na2EDTA) fraction. Irrespective of soil type, source and rate of WWTS application, summation of quantities of various fractions of all the trace elements studied through sequential extraction procedure were 1 to 25 % lower than that of total recoverable quantities of these trace elements determined on acid digestion described by US EPA method 3050 B. It was further evident that growing sorghum sudan grass for 65-d following the application of WWTS either depleted labile fractions or shifted the solid phases containing the trace elements in soils away from those extractable with more severe reagents, such as 4M HNO3 to those extractable with milder reagents such as dilute NaOH and Na2EDTA.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/metabolismo , Esgotos/química , Poluentes do Solo/metabolismo , Sorghum/metabolismo , Biotransformação , Cádmio/química , Cádmio/metabolismo , Fracionamento Químico , Cromo/química , Cromo/metabolismo , Cobre/química , Cobre/metabolismo , Chumbo/química , Chumbo/metabolismo , Metais Pesados/química , Solo/química , Poluentes do Solo/análise , Sorghum/química , Sorghum/crescimento & desenvolvimento , Estados Unidos , Zinco/química , Zinco/metabolismo
4.
J Environ Qual ; 42(4): 982-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24216350

RESUMO

China's vegetable production has experienced a rapid growth in recent years. Total production amounted to 522.7 million Mg (1 Mg = 10 g) in 2009, which was more than nine times that in 1980 and represented >50% of the world production. Meanwhile, excessive use of animal manures and chemical fertilizers in vegetable fields has brought various production and environmental challenges, including excessive accumulation of nutrients in soils and accelerated water pollution problems. In this study, we have evaluated the current status of phosphorus (P) in China's intensive vegetable production systems based on data summarized from nearly 100 publications plus results from our recent experiments. Gross overfertilization occurred in greenhouse (571 kg P ha) and open-field (117 kg P ha) vegetable systems compared with P removal in harvested crops (44 and 25 kg P ha) per season. Excess P input led to soil enrichment of labile P, measured as Olsen-P, averaging 179 (greenhouses) and 100 mg P kg (open fields) in the 0- to 20-cm soil depth, and in some cases led to P leaching, as evidenced by increases in Olsen-P and CaCl-P at the 40- to 60-cm soil depth. The vast majority of vegetable soils had Olsen-P exceeding the critical level (46.0-58.0 mg P kg) for optimum vegetable yield. Innovative policies and strategies are urgently needed to implement science-based nutrient management practices to attain sustainable vegetable production while protecting natural and environmental resources.


Assuntos
Fósforo , Solo , Animais , Fertilizantes , Poluentes do Solo , Verduras
5.
Artigo em Inglês | MEDLINE | ID: mdl-22702829

RESUMO

Wastewater treatment by-products (WTBP), such as sewage sludge (SS) may be used to enhance soil chemical, physical, and biological properties. These enhanced soil properties, in turn, could from its source of production to its site of application. These concerns may be mitigated by incineration of the SS to produce ash (SSA) and dissolved in water and stored in ponds as contribute to an increase in plant growth, production, mineral nutrition. Some SS is difficult to handle due to bad odor in its raw state and has large mass, hence expensive for transportation weathered SSA (WSSA). A greenhouse study was conducted using Candler fine sand CFS; (CFS; pH = 6.8) and Ogeechee loamy sand OLS; (pH = 5.2) with application of either 0, 24.7, 49.4, 98.8, or 148.2 Mg ha(-1) as either SS, SSA, or WSSA to evaluate the biomass production and elemental composition responses of sorghum-sudan grass (Sorghum vulgaris var. Sudanese hitche). Shoot and root biomass were 2 to 3 fold greater in the soil amended with SS, than either SSA or WSSA. Concentrations of nutrient and trace elements in the shoots and roots increased with increasing rates of amendments. Application of these by-products up to 98.8 Mg ha(-1) rate did not adversely affect growth or accumulation of trace elements in sorghum-sudan grass. Long-term field studies are recommended to investigate the potential leaching of various elements from the amended soils in addition to evaluation of plant growth and production responses to determine the acceptable rates of these by-products as amendments to agricultural soils.


Assuntos
Esgotos/química , Poluentes do Solo/análise , Sorghum/efeitos dos fármacos , Sorghum/crescimento & desenvolvimento , Oligoelementos/análise , Incineração , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Eliminação de Resíduos , Esgotos/análise , Solo/química , Poluentes do Solo/metabolismo , Sorghum/química , Sorghum/metabolismo , Oligoelementos/metabolismo , Eliminação de Resíduos Líquidos
6.
J Environ Sci Health B ; 44(3): 317-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19280486

RESUMO

Ammonia (NH(3)) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH(3)emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg(-1)) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg(-1)) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha(-1) in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH(3) volatilization. Results indicated a greater NH(3) loss from soils amended with SM compared to that with PL. The cumulative NH(3)volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH(3) was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH(3) from soils. A significant portion (> 50%) of cumulative NH(3) emission over 19 d occurred during the first 5-7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (< or = 5.60 Mg ha(-1)) is recommended to minimize NH(3) emissions.


Assuntos
Poluentes Atmosféricos/química , Amônia/química , Esterco/análise , Animais , Monitoramento Ambiental , Aves Domésticas , Suínos , Volatilização
7.
Int J Phytoremediation ; 15(3): 283-98, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23488013

RESUMO

A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by co-planting a cadmium/zinc (Cd/Zn) hyperaccumulator and lead (Pb) accumulator Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Co-planting with castor decreased the shoot biomass of S. alfredii as compared to that in monoculture. Cadmium concentration in S. alfredii shoot significantly decreased when grown with ryegrass or castor as compared to that in monoculture. However, no reduction of Zn or Pb concentration in S. alfredii shoot was detected in co-planting treatments. Total removal of either Cd, Zn, or Pb by plants was similar across S. alfredii monoculture or co-planting with ryegrass or castor, except enhanced Pb removal in S. alfredii and ryegrass co-planting treatment. Co-planting of S. alfredii with ryegrass or castor significantly enhanced the pyrene and anthracene dissipation as compared to that in the bare soil or S. alfredii monoculture. This appears to be due to the increased soil microbial population and activities in both co-planting treatments. Co-planting of S. alfredii with ryegrass or castor provides a promising strategy to mitigate both metal and PAH contaminants from co-contaminated soils.


Assuntos
Agricultura/métodos , Lolium/metabolismo , Metais Pesados/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Ricinus communis/metabolismo , Sedum/metabolismo , Antracenos/análise , Antracenos/metabolismo , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Ricinus communis/crescimento & desenvolvimento , Poluição Ambiental , Chumbo/análise , Chumbo/metabolismo , Lolium/crescimento & desenvolvimento , Metais Pesados/análise , Fenantrenos/análise , Fenantrenos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos/análise , Pirenos/metabolismo , Sedum/crescimento & desenvolvimento , Solo , Poluentes do Solo , Zinco/análise , Zinco/metabolismo
8.
Bioresour Technol ; 138: 8-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23612156

RESUMO

An innovative method was developed to produce engineered biochar from magnesium (Mg) enriched tomato tissues through slow pyrolysis in a N2 environment. Tomato plants treated with 25mM Mg accumulated much higher level of Mg in tissue, indicating Mg can be substantially enriched in tomato plants, and pyrolysis process further concentrated Mg in the engineered biochar (8.8% Mg). The resulting Mg-biochar composites (MgEC) showed better sorption ability to phosphate (P) in aqueous solutions compared to the other four tomato leaves biochars. Statistical analysis showed a strong and significant correlation between P removal rate and biochar Mg content (R(2)=0.78, and p<0.001), indicating the enriched Mg in the engineered biochar is the main factor controlling its P removal ability. SEM-EDX, XRD and XPS analyses showed that nanoscale Mg(OH)2 and MgO particles were presented on the surface of MgEC, which serve as the main adsorption sites for aqueous P.


Assuntos
Biotecnologia/métodos , Carbono/farmacologia , Carvão Vegetal/farmacologia , Magnésio/metabolismo , Fosfatos/isolamento & purificação , Solanum lycopersicum/efeitos dos fármacos , Temperatura , Adsorção , Cálcio/metabolismo , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA