Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 765, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874834

RESUMO

BACKGROUND: The combination of the increasing demand of freshwater crayfish exports, the reduced population sizes due to overfishing, the crayfish plague epidemics and the habitat degradation, have led to unrecorded translocations of Pontastacus leptodactylus in Greek lakes. METHODS AND RESULTS: In the present study, the genetics of five narrow clawed crayfish (P. leptodactylus) populations were studied, namely three translocated populations inhabiting in Northern Greece, one native Greek population from Evros river and one potential progeny source population from Turkey. Nine microsatellite loci previously designed for the specific species were investigated, in order to assess the levels of genetic diversity and further to confirm the origin of these translocated populations some decades after the translocation events. Our results confirmed that the source population for the translocated Greek population is the Turkish lake Egirdir. Further, despite the low values of the number of alleles, heterozygosity, and FST the populations were generally diverse, providing evidence for local adaptation. CONCLUSIONS: The low values of FIS for the translocated populations in combination with the high values of gene flow, possibly indicate the existence of re-introducing events. Apart from the translocated populations, high levels of genetic diversity and heterozygosity were observed in Evros population, suggesting it as a possible unit for future conservation purposes both as a donor population for reintroduction purposes as well as a unique gene pool protection source. To the best of our knowledge this is the first study dealing with the genetic composition of Greek P. leptodactylus populations from Nothern Greece, operating as a first step towards the development of proper management practices for restocking events and monitoring of translocated populations.


Assuntos
Astacoidea , Variação Genética , Genética Populacional , Repetições de Microssatélites , Animais , Repetições de Microssatélites/genética , Turquia , Grécia , Genética Populacional/métodos , Variação Genética/genética , Astacoidea/genética , Espécies Introduzidas , Fluxo Gênico , Alelos
2.
Open Life Sci ; 19(1): 20220983, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39479351

RESUMO

Milk microbiome contributes substantially to the formation of specific organoleptic and physicochemical characteristics of dairy products. The assessment of the composition and abundance of milk microbiota is a challenging task strongly influenced by many environmental factors. Specific dairy products may be designated by the Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) labeling, which however, occasionally fail to differentiate them according to specific quality characteristics, which are defined by different microbiota-driven reactions. Combining the above limitations, the scope of the present study, was to summarize the existing information toward three main issues. First, to assess the influence level of the diet type and grazing to rumen-GI tract, mammary gland, and udder microbiome formation in ruminants. Second, to discuss the factors affecting milk microbiota, as well as the effect of the endo-mammary route on milk microbial taxa. Lastly, to evaluate "milk microbiome" as a tool for product differentiation, according to origin, which will contribute to a more robust PDO and PGI labeling. Although the limitations are still a matter of fact (especially considering the sample collection, process, evaluation, and avoidance of its contamination), significant progress has been made, regarding the identification of the factors affecting dairy products' microbiota and its core composition. In conclusion, although so far not totally efficient in dairy products molecular identification, with the progress in soil, water, plant, and animal host's microbiota assembly's characterization, microbiomics could provide a powerful tool for authentication and traceability of dairy products.

3.
Hemasphere ; 7(1): e809, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698615

RESUMO

Adoptive immunotherapy with virus-specific cytotoxic T cells (VSTs) has evolved over the last three decades as a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after solid organ or allogeneic hematopoietic cell-transplantation (allo-HCT). Since the early proof-of-principle studies demonstrating that seropositive donor-derived T cells, specific for the commonest pathogens post transplantation, namely cytomegalovirus or Epstein-Barr virus (EBV) and generated by time- and labor-intensive protocols, could effectively control viral infections, major breakthroughs have then streamlined the manufacturing process of pathogen-specific T cells (pSTs), broadened the breadth of target recognition to even include novel emerging pathogens and enabled off-the-shelf administration or pathogen-naive donor pST production. We herein review the journey of evolution of adoptive immunotherapy with nonengineered, natural pSTs against infections and virus-associated malignancies in the transplant setting and briefly touch upon recent achievements using pSTs outside this context.

4.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36829892

RESUMO

Table olives are a major component of the Mediterranean diet and are associated with many beneficial biological activities, which are mainly related to their phenolic compounds. Olive fruit debittering process defines the quantitative and qualitative composition of table olives in biophenols. The aim of the present study was to evaluate the in vitro antioxidant capacity and DNA-protective activity of an extract originated from brine samples, according to the Greek style debbitering process of Kalamon olive fruits. The main phenolic components determined in the brine extract were hydroxytyrosol (HT), verbascoside (VERB) and tyrosol (T). The in vitro cell-free assays showed strong radical scavenging capacity from the extract, therefore antioxidant potential. At cellular level, human endothelial cells (EA.hy296) and murine myoblasts (C2C12) were treated with non-cytotoxic concentrations of the brine extract and the redox status was assessed by measuring glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation levels (TBARS). Our results show cell type specific response, exerting a hormetic reflection at endothelial cells. Finally, in both cell lines, pre-treatment with brine extract protected from H2O2-induced DNA damage. In conclusion, this is the first holistic approach highlighted table olive wastewaters from Kalamon- Greek style debittering process, as valuable source of bioactive compounds, which could have interesting implications for the development of new products in food or other industries.

5.
Genes (Basel) ; 14(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36833421

RESUMO

Pontastacus leptodactylus (Eschscholtz, 1823) (Decapoda:Astacidea:Astacidae) constitutes an ecologically and economically highly important species. In the present study, the mitochondrial genome of the freshwater crayfish P. leptodactylus from Greece is analyzed for the first time, using 15 newly designed primer pairs based on available sequences of closely related species. The analyzed coding part of the mitochondrial genome of P. leptodactylus consists of 15,050 base pairs including 13 protein-coding genes (PCGs), 2 ribosomal RNA gene (rRNAs), and 22 transfer RNA genes (tRNAs). These newly designed primers may be particularly useful in future studies for analyzing different mitochondrial DNA segments. Based on the entire mitochondrial genome sequence, compared to other haplotypes from related species belonging in the same family (Astacidae) available in the GenBank database, a phylogenetic tree was constructed depicting the phylogenetic relationships of P. leptodactylus. Based on the results, the genetic distance between Astacus astacus and P. leptodactylus is smaller than the genetic distance between Austropotamobius pallipes and Austropotamobius torrentium, despite the fact that the latter two are classified within the same genus, questioning the phylogenetic position of A. astacus as a different genus than P. leptodactylus. In addition, the sample from Greece seems genetically distant compared with a conspecific haplotype available in the GenBank database, possibly implying a genetic distinction of P. leptodactylus from Greece.


Assuntos
Decápodes , Genoma Mitocondrial , Animais , Astacoidea/genética , Grécia , Lagos , Filogenia , Decápodes/genética
6.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046597

RESUMO

T-cell-based, personalized immunotherapy can nowadays be considered the mainstream treatment for certain blood cancers, with a high potential for expanding indications. Chimeric antigen receptor T cells (CAR-Ts), an ex vivo genetically modified T-cell therapy product redirected to target an antigen of interest, have achieved unforeseen successes in patients with B-cell hematologic malignancies. Frequently, however, CAR-T cell therapies fail to provide durable responses while they have met with only limited success in treating solid cancers because unique, unaddressed challenges, including poor persistence, impaired trafficking to the tumor, and site penetration through a hostile microenvironment, impede their efficacy. Increasing evidence suggests that CAR-Ts' in vivo performance is associated with T-cell intrinsic features that may be epigenetically altered or dysregulated. In this review, we focus on the impact of epigenetic regulation on T-cell differentiation, exhaustion, and tumor infiltration and discuss how epigenetic reprogramming may enhance CAR-Ts' memory phenotype, trafficking, and fitness, contributing to the development of a new generation of potent CAR-T immunotherapies.

7.
Microorganisms ; 11(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37317206

RESUMO

Aquaculture is affected by numerous factors that may cause various health threats that have to be controlled by the most environmentally friendly approaches. In this context, prebiotics, probiotics, and synbiotics are frequently incorporated into organisms' feeding rations to ameliorate the health status of the host's intestine, enhancing its functionality and physiological performance, and to confront increasing antimicrobial resistance. The first step in this direction is the understanding of the complex microbiome system of the organism in order to administer the optimal supplement, in the best concentration, and in the correct way. In the present review, pre-, pro-, and synbiotics as aquaculture additives, together with the factors affecting gut microbiome in crayfish, are discussed, combined with their future prospective outcomes. Probiotics constitute non-pathogenic bacteria, mainly focused on organisms' energy production and efficient immune response; prebiotics constitute fiber indigestible by the host organism, which promote the preferred gastrointestinal tract microorganisms' growth and activity towards the optimum balance between the gastrointestinal and immune system's microbiota; whereas synbiotics constitute their combination as a blend. Among pro-, pre-, and synbiotics' multiple benefits are boosted immunity, increased resistance towards pathogens, and overall welfare promotion. Furthermore, we reviewed the intestinal microbiota abundance and composition, which are found to be influenced by a plethora of factors, including the organism's developmental stage, infection by pathogens, diet, environmental conditions, culture methods, and exposure to toxins. Intestinal microbial communities in crayfish exhibit high plasticity, with infections leading to reduced diversity and abundance. The addition of synbiotic supplementation seems to provide better results than probiotics and prebiotics separately; however, there are still conflicting results regarding the optimal concentration.

8.
Front Physiol ; 14: 1156394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051021

RESUMO

Freshwater crayfish are considered as aquatic products of high quality and high nutritional value. The increasing demand has led to populations reduction in several locations throughout their range. Thus, the development of appropriate rearing conditions is considered necessary, among which, optimization of their diet is a basic part. Towards this direction, in the present study, a 98-day feeding trial was carried out to evaluate the impact of dietary fishmeal substitution by Hermetia illucens meal on Pontastacus leptodactylus juveniles kept under laboratory conditions. Insect meals represent an environmentally friendly alternative solution, considered as a high-value feed source, rich in nutrients such as protein and fat. Three dietary regimens were utilized with a fishmeal-based without Hermetia meal (HM) defined as the control diet (HM0), and two diets, the first with 50% (HM50) and the second with 100% (HM100) of fishmeal substitution by HM, respectively. Growth performance, whole-body composition, and fatty acid profiles of individuals were studied in the different treatments. At the end of the feeding trial, statistically significant differences were observed in the mean survival rate (SR), specific growth rate (SGR), feed conversion ratio (FCR) and weight gain (WG) values. More specifically, animals fed with HM-based diets had higher mean SR, while the control group performed better regarding FCR and SGR. The HM inclusion in the diet significantly altered the whole-body chemical composition of the crayfish signifying a different metabolic utilization compared to fishmeal (FM). The fatty acid analysis revealed that 16:0 (palmitic acid) was the predominant saturated fatty acid (SFA), 18:1ω9 (oleic acid) was found to be the main monounsaturated fatty acid (MUFA), while 18:2ω6 (linoleic acid) represented the major polyunsaturated fatty acid (PUFA) followed by C20:3 cis ω3 (cis-11-14-17-eicosatrienoate) and C22:6 cis ω3 (cis-4,7,10,13,16,19-Docosahexaenoic) fatty acids. The inclusion of dietary HM significantly reduced the contents of ∑SFAs, ∑PUFAs and ∑ω6 fatty acids, as well as those of C22:6 cis ω3 and increased the ω6/ω3 and hypocholesterolemic to hypercholesterolemic ratios in the body. In parallel with improvements in balanced diets and in culture conditions that need to be optimised for rearing of freshwater crayfish, our study provides new data that enlighten the suitability of insect meals in the nutrition of P. leptodactylus.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35564680

RESUMO

Taking into consideration the essential contribution of Mytilus galloprovincialis farming, it is of rising importance to add knowledge regarding bacterial species occurrence in water samples from aquaculture zones from the point of view of both the organism and public health. In the present study, we investigated the bacterial community existing in water samples from six Mytilus galloprovincialis aquaculture areas in the Thermaikos gulf, northern Greece, that may provoke toxicity in aquatic organisms and humans and may indicate environmental pollution in mussel production as well as algal blooms. Bacterial species were identified molecularly by sequencing of a partial 16s rRNA segment and were analyzed phylogenetically for the confirmation of the bacterial taxonomy. The results obtained revealed the presence of four bacterial genera (Halomonas sp., Planococcus sp., Sulfitobacter sp., and Synechocystis sp.). Members of the Halomonas and Sulfitobacter genera have been isolated from highly polluted sites, Planococcus bacteria have been identified in samples derived directly from plastic debris, and Synechocystis bacteria are in line with microcystin detection. In this context, the monitoring of the bacteria community in mussel aquaculture water samples from the Thermaikos gulf, the largest mussel cultivation area in Greece, represents an indicator of water pollution, microplastics presence, algal blooms, and toxin presence.


Assuntos
Cianobactérias , Mytilus , Animais , Grécia , Humanos , Mytilus/microbiologia , Plásticos , RNA Ribossômico 16S/genética , Água , Poluição da Água
10.
Int J Mol Med ; 50(5)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129147

RESUMO

Mitochondria are considered the 'powerhouses' of cells, generating the essential energy in the form of adenosine triphosphate that they need for their energy demands. Nevertheless, their function is easily adaptable as regards the energy demands and the availability of chemical substrates. This allows cells to buffer sudden changes and reassure cellular metabolism, growth or survival. Currently, humans have different dietary habits, which provide several stimuli to the cell. According to the energy substrate availability due to the diet quality and diet temporality, mitochondrial physiology is greatly affected. The present review article aimed to collect all the available information that has been published to date concerning the impact of five different popular diets (high­fat diet, ketogenic diet, fasting, caloric restriction diet and the Mediterranean diet) on specific mitochondrial physiological aspects, such as function, biogenesis, mitophagy and mitochondrial fission/fusion.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Trifosfato de Adenosina/metabolismo , Dieta Hiperlipídica , Humanos , Mitocôndrias/metabolismo , Mitofagia
11.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290788

RESUMO

The objective of this study was to assess the resting values of the physiological oxidative stress exhibited by lambs and kids reared in Greece, and the potential correlations between redox biomarker levels in blood and other tissues (liver, diaphragm, quadriceps, psoas major muscle). For this purpose, lambs and kids at different developmental stages (d.s.) were used. The latter corresponded to four live weight categories (LWC), each representing 25%, 35%, 70% and 100% of mature body weight. In each of the above tissues, the levels of five common redox biomarkers were determined: glutathione (GSH), catalase (CAT), total antioxidant capacity (TAC), thiobarbituric reactive substances (TBARS), and protein carbonyls (CARBS). The results revealed that lambs and kids belonging to the 35% LWC had weaker endogenous antioxidant pools, while animals in the 70% and 100% LWC had elevated intrinsic antioxidant defense systems. Blood redox biomarkers were associated with the respective ones measured in the diaphragm, liver, quadriceps, and psoas major of both species. Importantly, TBARS levels in blood of animals in the 25% and 100% LWC are correlated with the TBARS levels in all other tissues tested. Blood antioxidant parameters might be used as potential biomarkers to predict the antioxidant status of tissues that affect meat quality. The latter would facilitate quality assessment prior to slaughter, allowing for timely nutritional interventions that can improve meat products.

12.
Animals (Basel) ; 12(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230264

RESUMO

The impact of climate change on both terrestrial and aquatic ecosystems tends to become more progressively pronounced and devastating over the years. The sector of aquaculture is severely affected by natural abiotic factors, on account of climate change, that lead to various undesirable phenomena, including aquatic species mortalities and decreased productivity owing to oxidative and thermal stress of the reared organisms. Novel innovative technologies, such as aquaponics that are based on the co-cultivation of freshwater fish with plants in a sustainable manner under the context of controlled abiotic factors, represent a promising tool for mitigating the effect of climate change on reared fish. The rainbow trout (Oncorhynchus mykiss) constitutes one of the major freshwater-reared fish species, contributing to the national economies of numerous countries, and more specifically, to regional development, supporting mountainous areas of low productivity. However, it is highly vulnerable to climate change effects, mainly due to the concrete raceways, in which it is reared, that are constructed on the flow-through of rivers and are, therefore, dependent on water's physical properties. The current review study evaluates the suitability, progress, and challenges of developing innovative and sustainable aquaponic systems to rear rainbow trout in combination with the cultivation of plants. Although not commercially developed to a great extent yet, research has shown that the rainbow trout is a valuable experimental model for aquaponics that may be also commercially exploited in the future. In particular, abiotic factors required in rainbow trout farming along, with the high protein proportion required in the ratios due to the strict carnivorous feeding behavior, result in high nitrate production that can be utilized by plants as a source of nitrogen in an aquaponic system. Intensive farming of rainbow trout in aquaponic systems can be controlled using digital monitoring of the system parameters, mitigating the obstacles originating from extreme temperature fluctuations.

13.
Antioxidants (Basel) ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203695

RESUMO

Cattle breeds or crossbreds with high productivity traits have been developed to meet a growing demand for food. When intensive farming practices are followed, animals face several challenges which can result in poor performance, compromised welfare and the reduced quality of their products. Our study aims to highlight the resting values of the physiological oxidative stress that three cattle breeds exhibit, and their potential relationship with meat quality. For this purpose, we determined the levels of five common redox biomarkers (glutathione (GSH), catalase (CAT), total antioxidant capacity (TAC), thiobarbituric reactive substances (TBARS) and protein carbonyls (CARBS)) in the tissues of three commonly used beef cattle breeds (Charolais (CHA), Limousin (LIM) and Simmental (SIM)) and their association with specific meat quality traits that depend on color, pH and texture. The results revealed that LIM cattle breed animals have elevated intrinsic antioxidant defense systems in comparison to CHA and SIM cattle breed animals. In addition, the meat quality parameters were associated with the redox biomarkers. We propose that the determination of specific antioxidant parameters in the blood might be used as potential biomarkers to predict meat quality. This would allow farmers to nutritionally intervene to improve the quality of their products.

14.
EJHaem ; 2(3): 428-439, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35844677

RESUMO

Background: Despite routine post-transplant viral monitoring and pre-emptive therapy, viral infections remain a major cause of allogeneic hematopoietic cell transplantation-related morbidity and mortality. Objective: We here aimed to prospectively assess the kinetics and the magnitude of cytomegalovirus-(CMV), Epstein Barr virus-(EBV), and BK virus-(BKV)-specific T cell responses post-transplant and evaluate their role in guiding therapeutic decisions by patient risk-stratification. Study design: The tri-virus-specific immune recovery was assessed by Elispot, in 50 consecutively transplanted patients, on days +20, +30, +60, +100, +150, +200 post-transplant and in case of reactivation, weekly for 1 month. Results: The great majority of the patients experienced at least one reactivation, while over 40% of them developed multiple reactivations from more than one of the tested viruses, especially those transplanted from matched or mismatched unrelated donors. The early reconstitution of virus-specific immunity (day +20), favorably correlated with transplant outcomes. Εxpanding levels of CMV-, EBV-, and BKV-specific T cells (VSTs) post-reactivation coincided with decreasing viral load and control of infection. Certain cut-offs of absolute VST numbers or net VST cell expansion post-reactivation were determined, above which, patients with CMV or BKV reactivation had >90% probability of complete response (CR). Conclusion: Immune monitoring of virus-specific T-cell reconstitution post-transplant may allow risk-stratification of virus reactivating patients and enable patient-tailored treatment. The identification of individuals with high probability of CR will minimize unnecessary overtreatment and drug-associated toxicity while allowing candidates for pre-emptive intervention with adoptive transfer of VSTs to be appropriately selected.

15.
Front Immunol ; 11: 608701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537032

RESUMO

Adoptive immunotherapy (AI) with pathogen-specific T cells is a promising alternative to pharmacotherapy for the treatment of opportunistic infections after allogeneic hematopoietic cell transplantation or solid organ transplantation. However, clinical implementation of AI is limited to patients not receiving high-dose steroids, a prerequisite for optimal T-cell function, practically excluding the most susceptible to infections patients from the benefits of AI. To address this issue, we here rapidly generated, clinical doses of a steroid-resistant T-cell product, simultaneously targeting four viruses (adenovirus, cytomegalovirus, Epstein Barr virus, and BK virus) and the fungus Aspergillus fumigatus, by genetic disruption of the glucocorticoid receptor (GR) gene using CRISPR/CAS9 ribonucleoprotein delivery. The product, "Cerberus" T cells (Cb-STs), was called after the monstrous three-headed dog of Greek mythology, due to its triple potential; specificity against viruses, specificity against fungi and resistance to glucocorticoids. Following efficient on-target GR disruption and minimal off-target editing, the generated Cb-STs maintained the characteristics of pentavalent-STs, their unedited counterparts, including polyclonality, memory immunophenotype, specificity, and cytotoxicity while they presented functional resistance to dexamethasone. Cb-STs may become a powerful, one-time treatment for severely immunosuppressed patients under glucocorticoids who suffer from multiple, life-threatening infections post-transplant, and for whom therapeutic choices are limited.


Assuntos
Glucocorticoides/farmacologia , Hospedeiro Imunocomprometido/imunologia , Infecções Oportunistas/imunologia , Linfócitos T/imunologia , Viroses/imunologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/imunologia , Linhagem Celular , Dexametasona/farmacologia , Células HEK293 , Humanos , Hospedeiro Imunocomprometido/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Infecções Oportunistas/tratamento farmacológico , Receptores de Antígenos Quiméricos/imunologia , Receptores de Glucocorticoides/imunologia , Linfócitos T/efeitos dos fármacos , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Vírus/imunologia
16.
Bone Marrow Transplant ; 54(12): 1963-1972, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30867554

RESUMO

Invasive aspergillosis (IA) represents a leading cause of mortality in immunocompromised patients. Although adoptive immunotherapy with Aspergillus-specific T cells (Asp-STs) represents a promising therapeutic approach against IA, the complex and costly production limits its broader application. We generated Asp-STs from a single blood draw of healthy individuals or IA patients in only 10 days, by either Aspergillus fumigatus (AF) lysate or peptide stimulation of mononuclear cells. The cells were phenotypically and functionally characterized, and safety was assessed in xenografts. Healthy donor-derived and lysate- or peptide-pulsed Asp-STs presented comparable fold expansion, immunophenotype, and Th1 responses. Upon cross-stimulation, only the lysate-pulsed Asp-STs were empowered to respond to peptide stimulation, although both cell products induced hyphal damage. Importantly, Asp-STs cross-reacted with other fungal species and did not induce alloreactivity in vivo. IA patient-derived T cells displayed an anergic phenotype that prohibited sufficient expansion and yield of meaningful doses of Asp-STs for autologous immunotherapy. Using a rapid and simple process, we generated, from healthy donors but not IA patients, functionally active Asp-STs of broad specificity and at clinically relevant numbers. Such an approach may form the basis for the effective management of IA in the context of allogeneic hematopoietic cell transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA