Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Phytoremediation ; 26(9): 1474-1485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488053

RESUMO

Chromium (Cr) contamination of soil has substantially deteriorated soil health and has interfered with sustainable agricultural production worldwide and therefore, its remediation is inevitable. Inoculation of plant growth promoting rhizobacteria (PGPR) in association with nanotechnology has exerted broad based impacts in agriculture, and there is an urgent need to exploit their synergism in contaminated soils. Here, we investigated the effect of co-application of Cr-tolerant "Pseudomonas aeruginosa CKQ9" strain and nano zerovalent iron (nZVI) in improving the phytoremediation potential of aloe vera (Aloe barbadensis L.) under Cr contamination. Soil was contaminated by using potassium dichromate (K2Cr2O7) salt and 15 mg kg-1 contamination level in soil was maintained via spiking and exposure to Cr lasted throughout the duration of the experiment (120 days). We observed that the co-application alleviated the adverse impacts of Cr on aloe vera, and improved various plant attributes such as plant height, root area, number of leaves and gel contents by 51, 137, 67 and 49% respectively as compared to control treatment under Cr contamination. Similarly, significant boost in the activities of various antioxidants including catalase (124%), superoxide dismutase (87%), ascorbate peroxidase (36%), peroxidase (89%) and proline (34%) was pragmatic under contaminated soil conditions. In terms of soil Cr concentration and its plant uptake, co-application of P. aeruginosa and nZVI also reduced available Cr concentration in soil (50%), roots (77%) and leaves (84%), while simultaneously increasing the relative production index by 225% than un-inoculated control. Hence, integrating PGPR with nZVI can be an effective strategy for enhancing the phytoremediation potential of aloe vera.


Combined effect of PGPR and nanotechnology in the bioremediation of toxic contaminants is well reported in literature. Most of these reports comprise the use of hyperaccumulator plants for phytoextraction of heavy metals. However, phytostabilization potential of hyperaccumulators is still un-explored. Current study investigated the role of PGPR and Fe-NPs in suppressing the uptake of Cr in aloe vera, a hyperaccumulator plant.


Assuntos
Aloe , Biodegradação Ambiental , Cromo , Ferro , Pseudomonas aeruginosa , Poluentes do Solo , Cromo/metabolismo , Ferro/metabolismo , Poluentes do Solo/metabolismo , Pseudomonas aeruginosa/fisiologia
2.
Physiol Plant ; 172(2): 1336-1351, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33179272

RESUMO

Tetraena mandavillei L. is a perennial shrub native to the Middle Eastern countries of Asia, which is extensively regarded as a drought-tolerant plant. However, the plant reduces growth and biomass when grown in high concentrations of sodium chloride in the soil. We conducted a pot experiment to influence the negative impact of different levels of salinity (0, 10, and 20 dSm-1 ) and drought stress (100, 80, 60, and 40% water field capacity), to study different growth-related parameters, physiological alterations and ion uptake by T. mandavillei. Both salinity and drought stress caused a negative impact by affecting several attributes of T. mandavillei, but the plants showed some resistance against drought stress conditions in terms of growth and biomass. In addition to that, we noticed that a combinatorial and individual impact of drought and salinity stress decreased photosynthetic pigments and gas exchange parameters in T. mandavillei. Results also depicted that the combination of the abiotic stress conditions drought and salinity induced reactive oxygen species (ROS), indicating that the plants undergo oxidative damaged. However, due to the active plant defense system, the plant enhanced its performance under abiotic stress conditions, but due to the severe drought condition (40% water field capacity), a significant (P < 0.05) decrease in the activities of antioxidant compounds was caused. Furthermore, osmolytes also increased under both salinity and drought stress conditions in this study. Our results also showed that increased salinity and drought stress in the soil caused a significant increase in sodium (Na+ ) and chloride (Cl- ) ions in roots and shoots of T. mandavillei. In contrast to that, the contents of Calcium (Ca2+ ) and potassium (K+ ) were decreased in all organs of the plants with increasing levels of salinity and drought stress. Taken together, T. mandavillei can be classified as a facultative halophyte with the ability to tolerate drought stress and using salt accumulation mechanisms to tolerate salinity stress.


Assuntos
Secas , Salinidade , Fotossíntese , Cloreto de Sódio/farmacologia , Estresse Fisiológico
3.
Molecules ; 26(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770794

RESUMO

The sustainability of agroecosystems are maintained with agro-chemicals. However, after more than 80 years of intensive use, many pests and pathogens have developed resistance to the currently used chemistries. Thus, we explored the isolation and bioactivity of a chemical compound, Precocene I, isolated from the perennial grass, Desmosstachya bipinnata (L.) Stapf. Fractions produced from chloroform extractions showed suppressive activity on larvae of Spodoptera litura (Lepidoptera: Noctuidae), the Oriental armyworm. Column chromatography analyses identified Precocene I confirmed using FTIR, HPLC and NMR techniques. The bioactivity of the plant-extracted Dp-Precocene I was compared to a commercially produced Precocene I standard. The percentage of mortality observed in insects fed on plant tissue treated with 60 ppm Db-Precocene I was 97, 87 and 81, respectively, for the second, third and fourth instar larvae. The LC50 value of third instars was 23.2 ppm. The percentages of survival, pupation, fecundity and egg hatch were altered at sub-lethal concentrations of Db-Precocene I (2, 4, 6 and 8 ppm, sprays on castor leaves). The observed effects were negatively correlated with concentration, with a decrease in effects as concentrations increased. Distinct changes in feeding activity and damage to gut tissues were observed upon histological examination of S. litura larvae after the ingestion of Db-Precocene I treatments. Comparative analyses of mortality on a non-target organism, the earthworm, Eisenia fetida, at equal concentrations of Precocene I and two chemical pesticides (cypermethrin and monocrotophos) produced mortality only with the chemical pesticide treatments. These results of Db-Precocene I as a highly active bioactive compound support further research to develop production from the grass D. bipinnata as an affordable resource for Precocene-I-based insecticides.


Assuntos
Anelídeos/efeitos dos fármacos , Benzopiranos/farmacologia , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Poaceae/química , Spodoptera/efeitos dos fármacos , Animais , Benzopiranos/química , Benzopiranos/isolamento & purificação , Inseticidas/química , Inseticidas/isolamento & purificação , Testes de Sensibilidade Parasitária , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Análise Espectral
4.
Molecules ; 25(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076247

RESUMO

In the current study, the surface of superparamagnetic iron oxide (SPION) was coated with dextran (DEX), and conjugated with folic acid (FA), to enhance the targeted delivery and uptake of vinblastine (VBL) in PANC-1 pancreatic cancer cells. Numerous analyses were performed to validate the prepared FA-DEX-VBL-SPION, such as field emission scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering (DLS), Zeta Potential, Fourier transform infrared spectroscopy, and vibrating sample magnetometry (VSM). The delivery system capacity was evaluated by loading and release experiments. Moreover, in vitro biological studies, including a cytotoxicity study, cellular uptake assessment, apoptosis analysis, and real-time PCR, were carried out. The results revealed that the obtained nanocarrier was spherical with a suitable dispersion and without visible aggregation. Its average size, polydispersity, and zeta were 74 ± 13 nm, 0.080, and -45 mV, respectively. This dual functional nanocarrier also exhibited low cytotoxicity and a high apoptosis induction potential for successful VBL co-delivery. Real-time quantitative PCR analysis demonstrated the activation of caspase-3, NF-1, PDL-1, and H-ras inhibition, in PANC-1 cells treated with the FA-VBL-DEX-SPION nanostructure. Close inspection of the obtained data proved that the FA-VBL-DEX-SPION nanostructure possesses a noteworthy chemo-preventive effect on pancreatic cancer cells through the inhibition of cell proliferation and induction of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Nanopartículas de Magnetita/química , Neoplasias Pancreáticas/tratamento farmacológico , Vimblastina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Dextranos/química , Dextranos/farmacologia , Ácido Fólico/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/patologia , Vimblastina/farmacologia
5.
Molecules ; 25(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080798

RESUMO

This paper describes the preparation, characterization, and evaluation of honey/tripolyphosphate (TPP)/chitosan (HTCs) nanofibers loaded with capsaicin derived from the natural extract of hot pepper (Capsicum annuumL.) and loaded with gold nanoparticles (AuNPs) as biocompatible antimicrobial nanofibrous wound bandages in topical skin treatments. The capsaicin and AuNPs were packed within HTCs in HTCs-capsaicin, HTCs-AuNP, and HTCs-AuNPs/capsaicin nanofibrous mats. In vitro antibacterial testing against Pasteurella multocida, Klebsiella rhinoscleromatis,Staphylococcus pyogenes, and Vibrio vulnificus was conducted in comparison with difloxacin and chloramphenicol antibiotics. Cell viability and proliferation of the developed nanofibers were evaluated using an MTT assay. Finally, in vivo study of the wound-closure process was performed on New Zealand white rabbits. The results indicate that HTCs-capsaicin and HTCs-AuNPs are suitable in inhibiting bacterial growth compared with HTCs and HTCs-capsaicin/AuNP nanofibers and antibiotics (P < 0.01). The MTT assay demonstrates that the nanofibrous mats increased cell proliferation compared with the untreated control (P < 0.01). In vivo results show that the developed mats enhanced the wound-closure rate more effectively than the control samples. The novel nanofibrous wound dressings provide a relatively rapid and efficacious wound-healing ability, making the obtained nanofibers promising candidates for the development of improved bandage materials.


Assuntos
Anti-Infecciosos/química , Bandagens , Nanopartículas Metálicas/química , Nanofibras/química , Anti-Infecciosos/farmacologia , Capsaicina/química , Capsaicina/farmacologia , Quitosana/química , Quitosana/farmacologia , Ciprofloxacina/análogos & derivados , Ciprofloxacina/química , Ouro/química , Mel/microbiologia , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Pasteurella multocida/efeitos dos fármacos , Polifosfatos/química , Staphylococcus aureus/efeitos dos fármacos , Vibrio vulnificus/efeitos dos fármacos , Cicatrização
6.
Molecules ; 25(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126608

RESUMO

Tetrastigma leucostaphylum (TL) is an important ethnic medicine of Bangladesh used to treat diarrhea and dysentery. Hence, current study has been designed to characterize the antidiarrheal (in vivo) and cytotoxic (in vitro) effects of T. leucostaphylum. A crude extract was prepared with methanol (MTL) and further partitioned into n-hexane (NTL), dichloromethane (DTL), and n-butanol (BTL) fractions. Antidiarrheal activity was investigated using castor oil induced diarrhea, enteropooling, and gastrointestinal transit models, while cytotoxicity was evaluated using the brine shrimp lethality bioassay. In antidiarrheal experiments, all doses (100, 200, and 400 mg/kg) of the DTL extract significantly reduced diarrheal stool frequency, volume and weight of intestinal contents, and gastrointestinal motility in mice. Similarly, in the cytotoxicity assay, all extracts exhibited activity, with the DTL extract the most potent (LC50 67.23 µg/mL). GC-MS analysis of the DTL extract identified 10 compounds, which showed good binding affinity toward M3 muscarinic acetylcholine, 5-HT3, Gut inhibitory phosphodiesterase, DNA polymerase III subunit alpha, and UDP-N-acetylglucosamine-1 carboxyvinyltransferase enzyme targets upon molecular docking analysis. Although ADME/T analyses predicted the drug-likeness and likely safety upon consumption of these bioactive compounds, significant toxicity concerns are evident due to the presence of the known phytotoxin, 2,4-di-tert-butylphenol. In summary, T. leucostaphylum showed promising activity, helping to rationalize the ethnomedicinal use and importance of this plant, its safety profile following both acute and chronic exposure warrants further investigation.


Assuntos
Antidiarreicos/farmacologia , Medicina Tradicional , Extratos Vegetais/farmacologia , Folhas de Planta/química , Solventes/química , Vitaceae/química , Animais , Antidiarreicos/metabolismo , Antidiarreicos/uso terapêutico , Motilidade Gastrointestinal/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico , Conformação Proteica
7.
Sci Rep ; 14(1): 154, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167892

RESUMO

Meteorological factors play a crucial role in affecting air quality in the urban environment. Peshawar is the capital city of the Khyber Pakhtunkhwa province in Pakistan and is a pollution hotspot. Sources of PM10 and the influence of meteorological factors on PM10 in this megacity have yet to be studied. The current study aims to investigate PM10 mass concentration levels and composition, identify PM10 sources, and quantify links between PM10 and various meteorological parameters like temperature, relative humidity (RH), wind speed (WS), and rainfall (RF) during the winter months from December 2017 to February 2018. PM10 mass concentrations vary from 180 - 1071 µg m-3, with a mean value of 586 ± 217 µg m-3. The highest concentration is observed in December, followed by January and February. The average values of the mass concentration of carbonaceous species (i.e., total carbon, organic carbon, and elemental carbon) are 102.41, 91.56, and 6.72 µgm-3, respectively. Water-soluble ions adhere to the following concentration order: Ca2+ > Na+ > K+ > NH4+ > Mg2+. Twenty-four elements (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Co, Zn, Ga, Ge, As, Se, Kr, Ag, Pb, Cu, and Cd) are detected in the current study by PIXE analysis. Five sources based on Positive Matrix Factorization (PMF) modeling include industrial emissions, soil and re-suspended dust, household combustion, metallurgic industries, and vehicular emission. A positive relationship of PM10 with temperature and relative humidity is observed (r = 0.46 and r = 0.56, respectively). A negative correlation of PM10 is recorded with WS (r = - 0.27) and RF (r = - 0.46). This study's results motivate routine air quality monitoring owing to the high levels of pollution in this region. For this purpose, the establishment of air monitoring stations is highly suggested for both PM and meteorology. Air quality standards and legislation need to be revised and implemented. Moreover, the development of effective control strategies for air pollution is highly suggested.

8.
Sci Rep ; 14(1): 9978, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693252

RESUMO

An extremely important oil crop in the world, Helianthus annuus L. is one of the world's most significant members of the Asteraceae family. The rate and extent of seed germination and agronomic features are consistently affecting  by temperature (T) and changes in water potential (ψ). A broad hydrothermal time model with T and ψ components could explain sunflower responses over suboptimal T and ψ. A lab experiment was performed using the HTT model to discover both T and ψ and their interactive effects on sunflower germination and also to figure  out the cardinal Ts values. The sunflower seeds were germinated at temperatures (15 °C, 20 °C, 25 °C and 30 °C); each Ts had five constant ψs of 0, 0.3, 0.6, 0.9, and 1.2 MPa via PEG 6000 as osmotic stress inducer. The results revealed that highest germination index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 30 °C with osmotic stress of (- 1.2 MPa). The highest value of germination rate index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 15 °C with an osmotic stress of (- 1.2 MPa). In conclusion, water potential, temperature, and their interactions have a considerable impact on seed germination rate, and other metrics (GI, SVI-I, GRI, GE, SVI-II, and MGT). Seeds sown  at 20 °C with zero water potential showed high germination metrics such as GE, GP, GRI, and T50%. The maximum value to TTsub noted at 30 °C in - 0.9 MPa osmotic stress and the minimum value was calculated at 15 °C in - 1.2 MPa osmotic stress. The result of TTsupra recorded highest at 15 °C in  controlled group (0 MPa). Moreover, θH was  highest at 30 °C in controlled condition (0 MPa) and minimum value was observed at  20 °C under - 1.2 MPa osmotic stress. The value of θHTT were  maximum at  30 °C in controlled group (0 MPa) and minimum value was  recorded at 15 °C under - 1.2 MPa osmotic potential. The base, optimum and ceiling temperatures for sunflower germination metrics in this experiment were noted  6.8, 20 and 30 °C respectively.


Assuntos
Germinação , Helianthus , Pressão Osmótica , Sementes , Temperatura , Helianthus/crescimento & desenvolvimento , Helianthus/fisiologia , Sementes/crescimento & desenvolvimento , Água , Modelos Teóricos
9.
Sci Rep ; 14(1): 2614, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297010

RESUMO

Maize (Zea mays) is an influential crop in its production across the world. However, the invasion of many phytopathogens greatly affects the maize crop yield at various hotspot areas. Of many diseases, bacterial stalk rot of maize caused by Dickeya zeae results in severe yield reduction, thus the need for efficient management is important. Further, to produce epidemiological information for control of disease outbreaks in the hot spot regions of Sialkot District, Punjab Pakistan, extensive field surveys during 2021 showed that out of 266 visited areas, the highest disease incidence ranging from 66.5 to 78.5% while the lowest incidence was ranging from 9 to 20%. The Maxent modeling revealed that among 19 environmental variables, four variables including temperature seasonality (bio-4), mean temperature of the wettest quarter (bio-8), annual precipitation (bio-12), and precipitation of driest month (bio-14) were significantly contributing to disease distribution in current and coming years. The study outcomes revealed that disease spread will likely increase across four tehsils of Sialkot over the years 2050 and 2070. Our findings will be helpful to policymakers and researchers in devising effective disease management strategies against bacterial stalk rot of maize outbreaks in Sialkot, Pakistan.


Assuntos
Mudança Climática , Dickeya , Zea mays , Zea mays/microbiologia , Paquistão , Doenças das Plantas/microbiologia , Enterobacteriaceae
10.
Sci Rep ; 14(1): 7553, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555358

RESUMO

The objective of the study was to evaluate the performance of Pistia stratiotes for treatment of domestic wastewater in a free surface water flow constructed wetland. The objective of the study was to evaluate contaminants removal efficiency of the constructed wetland vegetated with P. stratiotes in treatment of domestic wastewater against Hydraulic retention time (HRT) of 10, 20 and 30 days was investigated. This asks for newer and efficient low-cost nature-based water treatment system which along with cost takes into consideration the sustainability of the ecosystem. Five constructed wetland setups improved the wastewater quality and purify it significantly by reducing the TDS by 83%, TSS by 82%, BOD by 82%, COD by 81%, Chloride by 80%, Sulfate by 77%, NH3 by 84% and Total Oil and Grease by 74%. There was an increase in pH of about 11.9%. Color and odor of wastewater was also improved significantly and effectively. It was observed that 30 days' HRT was optimum for the treatment of domestic wastewater. The final effluent was found to be suitable as per national environmental quality standards and recycled for watering plants and crop irrigation but not for drinking purposes. The treatment in constructed wetland system was found to be economical, as the cost of construction only was involved and operational and maintenance cost very minimal. Even this research was conducted on the sole purpose of commuting the efficiency of pollutant removal in short span time.


Assuntos
Araceae , Purificação da Água , Águas Residuárias , Áreas Alagadas , Ecossistema , Eliminação de Resíduos Líquidos
11.
Sci Rep ; 14(1): 6042, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472226

RESUMO

Geospatial methods, such as GIS and remote sensing, map radon levels, pinpoint high-risk areas and connect geological traits to radon presence. These findings direct health planning, focusing tests, mitigation, and policies where radon levels are high. Overall, geospatial analyses offer vital insights, shaping interventions and policies to reduce health risks from radon exposure. There is a formidable threat to human well-being posed by the naturally occurring carcinogenic radon (222Rn) gas due to high solubility in water. Under the current scenario, it is crucial to assess the extent of 222Rn pollution in our drinking water sources across various regions and thoroughly investigate the potential health hazards it poses. In this regard, the present study was conducted to investigate the concentration of 222Rn in groundwater samples collected from handpumps and wells and to estimate health risks associated with the consumption of 222Rn-contaminated water. For this purpose, groundwater samples (n = 30) were collected from handpumps, and wells located in the Mulazai area, District Peshawar. The RAD7 radon detector was used as per international standards to assess the concentration of 222Rn in the collected water samples. The results unveiled that the levels of 222Rn in the collected samples exceeded the acceptable thresholds set by the US Environmental Protection Agency (US-EPA) of 11.1 Bq L-1. Nevertheless, it was determined that the average annual dose was below the recommended limit of 0.1 mSv per year, as advised by both the European Union Council and the World Health Organization. In order to avoid the harmful effects of such excessive 222Rn concentrations on human health, proper ventilation and storage of water in storage reservoirs for a long time before use is recommended to lower the 222Rn concentration.


Assuntos
Água Potável , Água Subterrânea , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Humanos , Água Potável/análise , Monitoramento de Radiação/métodos , Radônio/análise , Paquistão , Poluentes Radioativos da Água/análise , Água Subterrânea/análise , Poluição da Água/análise
12.
Sci Rep ; 13(1): 12956, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563236

RESUMO

Upper Egypt experiences high temperatures during summer and low temperatures during winter, which significantly impacts the sowing dates of maize in this region. The productivity of maize crops and water use efficiency can be greatly affected by water stress and sowing dates (SDs). Therefore, it is crucial to determine the optimal irrigation level and SDs based on local conditions. To assess the effects, two irrigation levels were employed: (1) control (full irrigation water applied) and (2) 70% of irrigation water. Field experiments were conducted at the National Water Research Center's water studies and research complex station in Toshka. The aim was to evaluate two irrigation levels (full and limited irrigation) across five SDs (early: mid-February and March, normal: mid-June, and late: mid-August and September) in both 2019 and 2020, in order to identify the ideal sowing date (SD) and irrigation level. The normal SD resulted in an increased the growth season length between plant emergence and maturity. Conversely, the late SD reduced the number of days until plant maturity, resulting in higher grain yields and water use efficiency (WUE). Notably, the SD in September, coupled with the 70% irrigation level, yielded the highest productivity and WUE, with a productivity of 7014 kg ha-1 and a WUE of 0. 9 kg m-3. Based on the findings, it is recommended that regions with similar conditions consider cultivating maize seeds in September, adopting a 70% irrigation level, to achieve optimal N uptake, growth traits (plant height, ear length, ear weight, number of rows per ear, and grain index weight), yield, and WUE.


Assuntos
Agricultura , Conservação dos Recursos Hídricos , Zea mays , Zea mays/crescimento & desenvolvimento , Irrigação Agrícola , Egito , Mudança Climática , Meio Ambiente , Estações do Ano , Tempo (Meteorologia)
13.
Environ Pollut ; 335: 122321, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544403

RESUMO

Cadmium (Cd) is known to have detrimental effects on plant growth and human health. Recent studies showed that silicon nanoparticles (SNPs) can decrease Cd toxicity in plants. Therefore, a study was conducted using 50 µM Cd and 1.50 mM SNPs to investigate Cd uptake, subcellular distribution, proline (Pro) metabolism, and the antioxidant defense system in rapeseed seedlings. In this study, results indicated that Cd stress negatively affected rapeseed growth, and high Cd contents accumulated in both shoots and roots. However, SNPs significantly decreased Cd contents in shoots and roots. Moreover, substantial increases were found in root fresh weight by 40.6% and dry weight by 46.6%, as well as shoot fresh weight by 60.1% and dry weight by 113.7% with the addition of SNPs. Furthermore, the addition of SNPs alleviated oxidative injury by maintaining the ascorbate-glutathione (AsA-GSH) cycle and increased Pro biosynthesis which could be due to high activities of Δ1-pyrroline-5-carboxylate synthase (P5CS) and reductase (P5CR) and decreased proline dehydrogenase (ProDH) activity. Furthermore, the addition of SNPs accumulated Cd in the soluble fraction (42%) and cell wall (45%). Results indicate that SNPs effectively reduce Cd toxicity in rapeseed seedlings which may be effective in promoting both rapeseed productivity and human health preservation.


Assuntos
Brassica napus , Brassica rapa , Humanos , Brassica napus/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Silício/farmacologia , Silício/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Brassica rapa/metabolismo , Plântula/metabolismo , Prolina/metabolismo , Raízes de Plantas/metabolismo , Glutationa/metabolismo
14.
Plants (Basel) ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903898

RESUMO

Red dragon fruit (Hylocereus polyrhizus) is an economic and promising fruit crop in arid and semi-arid regions with water shortage. An automated liquid culture system using bioreactors is a potential tool for micropropagation and large-scale production. In this study, axillary cladode multiplication of H. polyrhizus was assessed using cladode tips and cladode segments in gelled culture versus continuous immersion air-lift bioreactors (with or without a net). Axillary multiplication using cladode segments (6.4 cladodes per explant) was more effective than cladode tip explants (4.5 cladodes per explant) in gelled culture. Compared with gelled culture, continuous immersion bioreactors provided high axillary cladode multiplication (45.9 cladodes per explant) with a higher biomass and length of axillary cladodes. Inoculation of H. polyrhizus micropropagated plantlets with arbuscular mycorrhizal fungi (Gigaspora margarita and Gigaspora albida) significantly increased the vegetative growth during acclimatization. These findings will improve the large-scale propagation of dragon fruit.

15.
Sci Rep ; 13(1): 16270, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758773

RESUMO

Human pathogenic fungi and bacteria pose a huge threat to human life, accounting for high rates of mortality every year. Unfortunately, the past few years have seen an upsurge in multidrug resistance pathogens. Consequently, finding an effective alternative antimicrobial agent is of utmost importance. Hence, this study aimed to phytofabricate silver nanoparticles (AgNPs) using aqueous extracts of the solid endosperm of Cocos nucifera L, also known as coconut meat (Cm). Green synthesis is a facile, cost-effective and eco-friendly methods which has several benefits over other physical and chemical methods. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The Cm-AgNPs showed a UV-Vis peak at 435 nm and were crystalline and quasi-spherical, with an average size of 15 nm. The FTIR spectrum displayed functional groups of phenols, alkaloids, sugars, amines, and carbonyl compounds, which are vital in the reduction and capping of NPs. The antibacterial and anticandidal efficacy of the Cm-AgNPs was assessed by the agar-well diffusion method and expressed as a zone of inhibition (ZOI). Amongst all the test isolates, Staphylococcus epidermidis, Candida auris, and methicillin-resistant Staphylococcus epidermidis were more susceptible to the NPs with a ZOI of 26.33 ± 0.57 mm, 19.33 ± 0.57 mm, and 18 ± 0.76 mm. The MIC and MFC values for Candida spp. were higher than the bacterial test isolates. Scanning electron microscopic studies of all the test isolates at their MIC concentrations showed drastically altered cell morphology, indicating that the NPs could successfully cross the cell barrier and damage the cell integrity, causing cell death. This study reports the efficacy of Cm-AgNPs against several Candida and bacterial strains, which had not been reported in earlier studies. Furthermore, the synthesized AgNPs exhibited significant antioxidant activity. Thus, the findings of this study strongly imply that the Cm-AgNPs can serve as promising candidates for therapeutic applications, especially against multidrug-resistant isolates of Candida and bacteria. However, further investigation is needed to understand the mode of action and biosafety.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Humanos , Cocos , Antioxidantes/farmacologia , Prata/farmacologia , Anti-Infecciosos/farmacologia , Candida , Carne
16.
Sci Rep ; 13(1): 19024, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923861

RESUMO

Soil salinization is a prevalent form of land degradation particularly in water-deficient regions threatening agricultural sustainability. Present desalinization methods demand excessive water use. Biochar has been recognized as a potential remedy for saline soils and Gibberellic acids (GA3) are known to mediate various biochemical processes aiding in stress mitigation. This study was undertaken at The Islamia University of Bahawalpur during winter 2022-23 to explore the combined effect of biochar and GA3 on wheat (Triticum aestivum L.) in saline conditions. Employing a fully randomized design wheat seeds in 24 pots were subjected to two salinity levels with three replications across eight treatments: T1 to T8 ranging from controls with different soil electrical conductivities (ECs) to treatments involving combinations of GA3, biochar and varying soil ECs. These treatments included T1 (control with soil EC of 2.43dS/m), T2 (salinity stress with soil EC of 5.11dS/m), T3 (10 ppm GA3 with soil EC of 2.43dS/m), T4 (10 ppm GA3 with soil EC of 5.11dS/m), T5 (0.75% Biochar with soil EC of 2.43dS/m), T6 (0.75% Biochar with soil EC of 5.11dS/m), T7 (10 ppm GA3 combined with 0.75% biochar at soil EC of 2.43dS/m) and T8 (10 ppm GA3 plus 0.75% biochar at soil EC of 5.11dS/m). The results indicated that the combined applications of GA3 and biochar significantly enhanced plant growth in saline conditions viz. germination rate by 73%, shoot length of 15.54 cm, root length of 4.96 cm, plant height of 16.89 cm, shoot fresh weight 43.18 g, shoot dry weight 11.57 g, root fresh weight 24.26 g, root dry weight 9.31 g, plant water content 60.77%, photosynthetic rate 18.58(CO2 m-2 s-1) carotenoid 3.03 g, chlorophyll a 1.01 g, chlorophyll b 0.69 g, total chlorophyll contents by 1.9 g as compared to the control. The findings suggest that the combined application of these agents offers a sustainable and effective strategy for cultivating wheat in saline soils. The synergy between biochar and GA3 presents a promising avenue for sustainable wheat cultivation in saline conditions. This combined approach not only improves plant growth but also offers an innovative, water-efficient solution for enhancing agricultural productivity in saline-affected regions.


Assuntos
Triticum , Verduras , Clorofila A , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Solo/química , Água , Solução Salina , Estresse Salino
17.
Microorganisms ; 11(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37894261

RESUMO

Fusarium wilt diseases severely influence the growth and productivity of numerous crop plants. The consortium of antagonistic rhizospheric Bacillus strains and quercetin were evaluated imperatively as a possible remedy to effectively manage the Fusarium wilt disease of tomato plants. The selection of Bacillus strains was made based on in-vitro antagonistic bioassays against Fusarium oxysporum f.sp. lycoprsici (FOL). Quercetin was selected after screening a library of phytochemicals during in-silico molecular docking analysis using tomato LysM receptor kinases "SILKY12" based on its dual role in symbiosis and plant defense responses. After the selection of test materials, pot trials were conducted where tomato plants were provided consortium of Bacillus strains as soil drenching and quercetin as a foliar spray in different concentrations. The combined application of consortium (Bacillus velezensis strain BS6, Bacillus thuringiensis strain BS7, Bacillus fortis strain BS9) and quercetin (1.0 mM) reduced the Fusarium wilt disease index up to 69%, also resulting in increased plant growth attributes. Likewise, the imperative application of the Bacillus consortium and quercetin (1.0 mM) significantly increased total phenolic contents and activities of the enzymes of the phenylpropanoid pathway. Non-targeted metabolomics analysis was performed to investigate the perturbation in metabolites. FOL pathogen negatively affected a range of metabolites including carbohydrates, amino acids, phenylpropanoids, and organic acids. Thereinto, combined treatment of Bacillus consortium and quercetin (1.0 mM) ameliorated the production of different metabolites in tomato plants. These findings prove the imperative use of Bacillus consortium and quercetin as an effective and sustainable remedy to manage Fusarium wilt disease of tomato plants and to promote the growth of tomato plants under pathogen stress conditions.

18.
ACS Omega ; 8(25): 22788-22808, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396236

RESUMO

Drought and osmotic stresses are major threats to agricultural crops as they affect plants during their life cycle. The seeds are more susceptible to these stresses during germination and establishment of seedlings. To cope with these abiotic stresses, various seed priming techniques have broadly been used. The present study aimed to assess seed priming techniques under osmotic stress. Osmo-priming with chitosan (1 and 2%), hydro-priming with distilled water, and thermo-priming at 4 °C were used on the physiology and agronomy of Zea mays L. under polyethylene glycol (PEG-4000)-induced osmotic stress (-0.2 and -0.4 MPa). The vegetative response, osmolyte content, and antioxidant enzymes of two varieties (Pearl and Sargodha 2002 White) were studied under induced osmotic stress. The results showed that seed germination and seedling growth were inhibited under osmotic stress and germination percentage, and the seed vigor index was enhanced in both varieties of Z. mays L. with chitosan osmo-priming. Osmo-priming with chitosan and hydro-priming with distilled water modulated the level of photosynthetic pigments and proline, which were reduced under induced osmotic stress; moreover, the activities of antioxidant enzymes were improved significantly. In conclusion, osmotic stress adversely affects the growth and physiological attributes; on the contrary, seed priming ameliorated the stress tolerance resistance of Z. mays L. cultivars to PEG-induced osmotic stress by activating the natural antioxidation enzymatic system and accumulating osmolytes.

19.
ACS Omega ; 8(25): 22575-22588, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396242

RESUMO

Soil salinization has become a major issue around the world in recent years, as it is one of the consequences of climate change as sea levels rise. It is crucial to lessen the severe consequences of soil salinization on plants. A pot experiment was conducted to regulate the physiological and biochemical mechanisms in order to evaluate the ameliorative effects of potassium nitrate (KNO3) on Raphanus sativus L. genotypes under salt stress. The results from the present study illustrated that the salinity stress induced a significant decrease in shoot length, root length, shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, number of leaves per plant, leaf area chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, net photosynthesis, stomatal conductance, and transpiration rate by 43, 67, 41, 21, 34, 28, 74, 91, 50, 41, 24, 34, 14, 26, and 67%, respectively, in a 40 day radish while decreased by 34, 61, 49, 19, 31, 27, 70, 81, 41, 16, 31, 11, 21, and 62%, respectively, in Mino radish. Furthermore, MDA, H2O2 initiation, and EL (%) of two varieties (40 day radish and Mino radish) of R. sativus increased significantly (P < 0.05) by 86, 26, and 72%, respectively, in the roots and also increased by 76, 106, and 38% in the leaves in a 40 day radish, compared to the untreated plants. The results also elucidated that the contents of phenolic, flavonoids, ascorbic acid, and anthocyanin in the two varieties (40 day radish and Mino radish) of R. sativus increased with the exogenous application of KNO3 by 41, 43, 24, and 37%, respectively, in the 40 day radish grown under the controlled treatments. Results indicated that implementing KNO3 exogenously in the soil increased the activities of antioxidants like SOD, CAT, POD, and APX by 64, 24, 36, and 84% in the roots and also increased by 21, 12, 23, and 60% in the leaves of 40 day radish while also increased by 42, 13, 18, and 60% in the roots and also increased by 13, 14, 16, and 41% in the leaves in Mino radish, respectively, in comparison to those plants grown without KNO3. We found that KNO3 substantially improved plant growth by lowering the levels of oxidative stress biomarkers, thereby further stimulating the antioxidant potential system, which led to an improved nutritional profile of both R. sativus L. genotypes under normal and stressed conditions. The current study would offer a deep theoretical foundation for clarifying the physiological and biochemical mechanisms by which the KNO3 improves salt tolerance in R. sativus L. genotypes.

20.
ACS Omega ; 8(23): 20471-20487, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332827

RESUMO

Sustainable agriculture is threatened by salinity stress because of the low yield quality and low crop production. Rhizobacteria that promote plant growth modify physiological and molecular pathways to support plant development and reduce abiotic stresses. The recent study aimed to assess the tolerance capacity and impacts of Bacillus sp. PM31 on the growth, physiological, and molecular responses of maize to salinity stress. In comparison to uninoculated plants, the inoculation of Bacillus sp. PM31 improved the agro-morphological traits [shoot length (6%), root length (22%), plant height (16%), fresh weight (39%), dry weight (29%), leaf area (11%)], chlorophyll [Chl a (17%), Chl b (37%), total chl (22%)], carotenoids (15%), proteins (40%), sugars (43%), relative water (11%), flavonoids (22%), phenols (23%), radical scavenging capacity (13%), and antioxidants. The Bacillus sp. PM31-inoculated plants showed a reduction in the oxidative stress indicators [electrolyte leakage (12%), H2O2 (9%), and MDA (32%)] as compared to uninoculated plants under salinity and increased the level of osmolytes [free amino acids (36%), glycine betaine (17%), proline (11%)]. The enhancement of plant growth under salinity was further validated by the molecular profiling of Bacillus sp. PM31. Moreover, these physiological and molecular mechanisms were accompanied by the upregulation of stress-related genes (APX and SOD). Our study found that Bacillus sp. PM31 has a crucial and substantial role in reducing salinity stress through physiological and molecular processes, which may be used as an alternative approach to boost crop production and yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA