Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7959): 147-153, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949200

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases1-3. Here we analysed RNA splicing data of a large cohort of primary and metastatic PDA tumours to identify differentially spliced events that correlate with PDA progression. De novo motif analysis of these events detected enrichment of motifs with high similarity to the RBFOX2 motif. Overexpression of RBFOX2 in a patient-derived xenograft (PDX) metastatic PDA cell line drastically reduced the metastatic potential of these cells in vitro and in vivo, whereas depletion of RBFOX2 in primary pancreatic tumour cell lines increased the metastatic potential of these cells. These findings support the role of RBFOX2 as a potent metastatic suppressor in PDA. RNA-sequencing and splicing analysis of RBFOX2 target genes revealed enrichment of genes in the RHO GTPase pathways, suggesting a role of RBFOX2 splicing activity in cytoskeletal organization and focal adhesion formation. Modulation of RBFOX2-regulated splicing events, such as via myosin phosphatase RHO-interacting protein (MPRIP), is associated with PDA metastases, altered cytoskeletal organization and the induction of focal adhesion formation. Our results implicate the splicing-regulatory function of RBFOX2 as a tumour suppressor in PDA and suggest a therapeutic approach for metastatic PDA.


Assuntos
Processamento Alternativo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Processamento Alternativo/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Animais , Metástase Neoplásica , Adesões Focais
2.
Hum Mol Genet ; 32(15): 2455-2463, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37145099

RESUMO

Duchene muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are genetic neuromuscular disorders that affect skeletal and cardiac muscle resulting from mutations in the dystrophin gene (DMD), coding for dystrophin protein. Read-through therapies hold great promise for the treatment of genetic diseases harboring nonsense mutations, such as DMD/BMD, as they enable a complete translation of the affected mRNA. However, to date, most read-through drugs have not achieved a cure for patients. One possible explanation for the limitation of these therapies for DMD/BMD is that they rely on the presence of mutant dystrophin mRNAs. However, the mutant mRNAs containing premature termination codons are identified by the cellular surveillance mechanism, the nonsense-mediated mRNA decay (NMD) process, and are degraded. Here, we show that the combination of read-through drugs together with known NMD inhibitors have a synergistic effect on the levels of nonsense-containing mRNAs, among them the mutant dystrophin mRNA. This synergistic effect may enhance read-through therapies' efficacy and improve the current treatment for patients.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Códon de Terminação/genética , Degradação do RNAm Mediada por Códon sem Sentido , Mutação
3.
Hum Genet ; 136(9): 1113-1127, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28429085

RESUMO

Tumor cells alter their metabolism by a wide array of mechanisms to promote growth and proliferation. Dysregulated expression and/or somatic mutations of key components of the glycolytic pathway/TCA cycle as well as other metabolic pathways allow tumor cells to improve their ability to survive harsh conditions such as hypoxia and the presence of reactive oxygen species, as well as the ability to obtain nutrients to increase lipids, protein, and nucleic acids biogenesis. Approximately 95% of the human protein encoding genes undergo alternative splicing (AS), a regulated process of gene expression that greatly diversifies the proteome by creating multiple proteins from a single gene. In recent years, a growing body of evidence suggests that unbalanced AS, the formation of certain pro-tumorigenic isoforms and the reduction of anti-tumorigenic isoforms, is implicated in a variety of cancers. It is becoming increasingly clear that cancer-associated AS contributes to increased growth and proliferation, partially due to effects on metabolic reprogramming. Here, we summarize the known roles of AS in regulating cancer metabolism. We present evidence supporting the idea that AS, in many types of cancer, acts as a molecular switch that alters metabolism to drive tumorigenesis. We propose that the elucidation of misregulated AS and its downstream effects on cancer metabolism emphasizes the need for new therapeutic approaches aiming to modulate the splicing machinery to selectively target cancer cells.


Assuntos
Processamento Alternativo , Ciclo do Ácido Cítrico/genética , Glicólise/genética , Neoplasias , RNA Neoplásico , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
4.
Elife ; 112022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189922

RESUMO

The mTORC1 substrate, S6 Kinase 1 (S6K1), is involved in the regulation of cell growth, ribosome biogenesis, glucose homeostasis, and adipogenesis. Accumulating evidence has suggested a role for mTORC1 signaling in the DNA damage response. This is mostly based on the findings that mTORC1 inhibitors sensitized cells to DNA damage. However, a direct role of the mTORC1-S6K1 signaling pathway in DNA repair and the mechanism by which this signaling pathway regulates DNA repair is unknown. In this study, we discovered a novel role for S6K1 in regulating DNA repair through the coordinated regulation of the cell cycle, homologous recombination (HR) DNA repair (HRR) and mismatch DNA repair (MMR) mechanisms. Here, we show that S6K1 orchestrates DNA repair by phosphorylation of Cdk1 at serine 39, causing G2/M cell cycle arrest enabling homologous recombination and by phosphorylation of MSH6 at serine 309, enhancing MMR. Moreover, breast cancer cells harboring RPS6KB1 gene amplification show increased resistance to several DNA damaging agents and S6K1 expression is associated with poor survival of breast cancer patients treated with chemotherapy. Our findings reveal an unexpected function of S6K1 in the DNA repair pathway, serving as a tumorigenic barrier by safeguarding genomic stability.


Damage to the DNA in our cells can cause harmful changes that, if unchecked, can lead to the development of cancer. To help prevent this, cellular mechanisms are in place to repair defects in the DNA. A particular process, known as the mTORC1-S6K1 pathway is suspected to be important for repair because when this pathway is blocked, cells become more sensitive to DNA damage. It is still unknown how the various proteins involved in the mTORC1-S6K1 pathway contribute to repairing DNA. One of these proteins, S6K1, is an enzyme involved in coordinating cell growth and survival. The tumor cells in some forms of breast cancer produce more of this protein than normal, suggesting that S6K1 benefits these cells' survival. However, it is unclear exactly how the enzyme does this. Amar-Schwartz, Ben-Hur, Jbara et al. studied the role of S6K1 using genetically manipulated mouse cells and human cancer cells. These experiments showed that the protein interacts with two other proteins involved in DNA repair and activates them, regulating two different repair mechanisms and protecting cells against damage. These results might explain why some breast cancer tumors are resistant to radiotherapy and chemotherapy treatments, which aim to kill tumor cells by damaging their DNA. If this is the case, these findings could help clinicians choose more effective treatment options for people with cancers that produce additional S6K1. In the future, drugs that block the activity of the enzyme could make cancer cells more susceptible to chemotherapy.


Assuntos
Neoplasias da Mama , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Neoplasias da Mama/genética , Proteína Quinase CDC2/metabolismo , DNA , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Glucose , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA