Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Vet Med Int ; 2023: 8354235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058657

RESUMO

During the production cycle of poultry farms, pathogens may remain in the next cycle of rearing young chickens. This study was conducted at three industrial chicken farms (A, B, and C) in central Thailand. Results showed that the percentages of E. coli during the resting period in farms A, B, and C were 28.6, 53.8, and 7.8, respectively, and those during the growing period were 45, 68.8, and 75. The most common resistant patterns during the resting period in all farms were AML-AMP-SXT and AML-AMP-DO-SXT, and those during the growing period were AML-AMP and AML-AMP-SXT. The locations of blaTEM-positive E. coli isolates from the inside houses (inside buildings) of all farms included cloacal swabs, floors, water nipples, pan feeders, and husks, whereas that from the outside environment included boots, wastewater, soil, and water from cooling pads and tanks. Our results indicate that the percentage of antimicrobial resistance (AMR) and its pattern depend on the husbandry period and the strictness of biosecurity. Moreover, our findings derived from samples gathered from broiler farms between 2013 and 2015 align with those of the current studies, highlighting persistent trends in E. coli resistance to various antimicrobial agents. Therefore, enhancing biosecurity measures throughout both the resting and growing periods is crucial, with a specific focus on managing raw materials, bedding, breeding equipment, and staff hygiene to reduce the transmission of antimicrobial resistance in poultry farms.

2.
Vet World ; 14(3): 689-695, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935415

RESUMO

BACKGROUND AND AIM: The emerging of antimicrobial-resistant foodborne bacteria is a serious public health concern worldwide. This study was conducted to determine the association between farm management systems and antimicrobial resistance profiles of Escherichia coli isolated from conventional swine farms and natural farms. E. coli isolates were evaluated for the minimum inhibitory concentration (MIC) of 17 antimicrobials, extended-spectrum beta-lactamase (ESBL)-producing enzymes, and plasmid-mediated colistin-resistant genes. MATERIALS AND METHODS: Fecal swabs were longitudinally collected from healthy pigs at three stages comprising nursery pigs, fattening pigs, and finishers, in addition to their environments. High-generation antimicrobials, including carbapenem, were selected for the MIC test. DNA samples of colistin-resistant isolates were amplified for mcr-1 and mcr-2 genes. Farm management and antimicrobial applications were evaluated using questionnaires. RESULTS: The detection rate of ESBL-producing E. coli was 17%. The highest resistance rates were observed with trimethoprim/sulfamethoxazole (53.9%) and colistin (48.5%). All isolates were susceptible to carbapenem. Two large intensive farms that used colistin-supplemented feed showed the highest colistin resistance rates of 84.6% and 58.1%. Another intensive farm that did not use colistin showed a low colistin resistance rate of 14.3%. In contrast, a small natural farm that was free from antimicrobials showed a relatively high resistance rate of 41.8%. The majority of colistin-resistant isolates had MIC values of 8 mg/mL (49%) and ≥16 mg/mL (48%). The genes mcr-1 and mcr-2 were detected at rates of 64% and 38%, respectively, among the colistin-resistant E. coli. CONCLUSION: Commensal E. coli were relatively sensitive to the antimicrobials used for treating critical human infections. Colistin use was the primary driver for the occurrence of colistin resistance in swine farms having similar conventional management systems. In the natural farm, cross-contamination could just occur through the environment if farm biosecurity is not set up carefully, thus indicating the significance of farm biosecurity risk even in an antimicrobial-free farm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA