Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Pathol ; 260(5): 498-513, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37608772

RESUMO

The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Linfócitos do Interstício Tumoral , Biomarcadores , Aprendizado de Máquina
2.
Mod Pathol ; 36(8): 100196, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100227

RESUMO

Microscopic examination of pathology slides is essential to disease diagnosis and biomedical research. However, traditional manual examination of tissue slides is laborious and subjective. Tumor whole-slide image (WSI) scanning is becoming part of routine clinical procedures and produces massive data that capture tumor histologic details at high resolution. Furthermore, the rapid development of deep learning algorithms has significantly increased the efficiency and accuracy of pathology image analysis. In light of this progress, digital pathology is fast becoming a powerful tool to assist pathologists. Studying tumor tissue and its surrounding microenvironment provides critical insight into tumor initiation, progression, metastasis, and potential therapeutic targets. Nucleus segmentation and classification are critical to pathology image analysis, especially in characterizing and quantifying the tumor microenvironment (TME). Computational algorithms have been developed for nucleus segmentation and TME quantification within image patches. However, existing algorithms are computationally intensive and time consuming for WSI analysis. This study presents Histology-based Detection using Yolo (HD-Yolo), a new method that significantly accelerates nucleus segmentation and TME quantification. We demonstrate that HD-Yolo outperforms existing WSI analysis methods in nucleus detection, classification accuracy, and computation time. We validated the advantages of the system on 3 different tissue types: lung cancer, liver cancer, and breast cancer. For breast cancer, nucleus features by HD-Yolo were more prognostically significant than both the estrogen receptor status by immunohistochemistry and the progesterone receptor status by immunohistochemistry. The WSI analysis pipeline and a real-time nucleus segmentation viewer are available at https://github.com/impromptuRong/hd_wsi.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Microambiente Tumoral , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Mama/patologia
3.
Bioinformatics ; 38(2): 513-519, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34586355

RESUMO

MOTIVATION: Nucleus detection, segmentation and classification are fundamental to high-resolution mapping of the tumor microenvironment using whole-slide histopathology images. The growing interest in leveraging the power of deep learning to achieve state-of-the-art performance often comes at the cost of explainability, yet there is general consensus that explainability is critical for trustworthiness and widespread clinical adoption. Unfortunately, current explainability paradigms that rely on pixel saliency heatmaps or superpixel importance scores are not well-suited for nucleus classification. Techniques like Grad-CAM or LIME provide explanations that are indirect, qualitative and/or nonintuitive to pathologists. RESULTS: In this article, we present techniques to enable scalable nuclear detection, segmentation and explainable classification. First, we show how modifications to the widely used Mask R-CNN architecture, including decoupling the detection and classification tasks, improves accuracy and enables learning from hybrid annotation datasets like NuCLS, which contain mixtures of bounding boxes and segmentation boundaries. Second, we introduce an explainability method called Decision Tree Approximation of Learned Embeddings (DTALE), which provides explanations for classification model behavior globally, as well as for individual nuclear predictions. DTALE explanations are simple, quantitative, and can flexibly use any measurable morphological features that make sense to practicing pathologists, without sacrificing model accuracy. Together, these techniques present a step toward realizing the promise of computational pathology in computer-aided diagnosis and discovery of morphologic biomarkers. AVAILABILITY AND IMPLEMENTATION: Relevant code can be found at github.com/CancerDataScience/NuCLS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Núcleo Celular , Árvores de Decisões
4.
Histopathology ; 78(6): 791-804, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33211332

RESUMO

Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis-driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis-driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the 'big data' of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology.


Assuntos
Aloenxertos/patologia , Inteligência Artificial , Transplante de Rim , Rim/patologia , Humanos , Processamento de Imagem Assistida por Computador , Nefropatias/patologia , Nefropatias/cirurgia , Aprendizado de Máquina
5.
Proc Natl Acad Sci U S A ; 115(13): E2970-E2979, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531073

RESUMO

Cancer histology reflects underlying molecular processes and disease progression and contains rich phenotypic information that is predictive of patient outcomes. In this study, we show a computational approach for learning patient outcomes from digital pathology images using deep learning to combine the power of adaptive machine learning algorithms with traditional survival models. We illustrate how these survival convolutional neural networks (SCNNs) can integrate information from both histology images and genomic biomarkers into a single unified framework to predict time-to-event outcomes and show prediction accuracy that surpasses the current clinical paradigm for predicting the overall survival of patients diagnosed with glioma. We use statistical sampling techniques to address challenges in learning survival from histology images, including tumor heterogeneity and the need for large training cohorts. We also provide insights into the prediction mechanisms of SCNNs, using heat map visualization to show that SCNNs recognize important structures, like microvascular proliferation, that are related to prognosis and that are used by pathologists in grading. These results highlight the emerging role of deep learning in precision medicine and suggest an expanding utility for computational analysis of histology in the future practice of pathology.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Genômica/métodos , Glioma/genética , Glioma/patologia , Técnicas Histológicas/métodos , Redes Neurais de Computação , Algoritmos , Neoplasias Encefálicas/terapia , Glioma/terapia , Humanos , Processamento de Imagem Assistida por Computador , Medicina de Precisão , Prognóstico
6.
Lab Invest ; 100(1): 98-109, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570774

RESUMO

Bone marrow aspirate (BMA) differential cell counts (DCCs) are critical for the classification of hematologic disorders. While manual counts are considered the gold standard, they are labor intensive, time consuming, and subject to bias. A reliable automated counter has yet to be developed, largely due to the inherent complexity of bone marrow specimens. Digital pathology imaging coupled with machine learning algorithms represents a highly promising emerging technology for this purpose. Yet, training datasets for BMA cellular constituents, critical for building and validating machine learning algorithms, are lacking. Herein, we report our experience creating and employing such datasets to develop a machine learning algorithm to detect and classify BMA cells. Utilizing a web-based system that we developed for annotating and managing digital pathology images, over 10,000 cells from scanned whole slide images of BMA smears were manually annotated, including all classes that comprise the standard clinical DCC. We implemented a two-stage, detection and classification approach that allows design flexibility and improved classification accuracy. In a sixfold cross-validation, our algorithms achieved high overall accuracy in detection (0.959 ± 0.008 precision-recall AUC) and classification (0.982 ± 0.03 ROC AUC) using nonneoplastic samples. Testing on a small set of acute myeloid leukemia and multiple myeloma samples demonstrated similar detection and classification performance. In summary, our algorithms showed promising early results and represent an important initial step in the effort to devise a reliable, objective method to automate DCCs. With further development to include formal clinical validation, such a system has the potential to assist in disease diagnosis and prognosis, and significantly impact clinical practice.


Assuntos
Células da Medula Óssea , Aprendizado de Máquina , Patologia/métodos , Contagem de Células , Conjuntos de Dados como Assunto , Humanos
7.
Bioinformatics ; 35(18): 3461-3467, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30726865

RESUMO

MOTIVATION: While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images. RESULTS: We recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-participant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20 000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (mean AUC=0.945), and the scale of annotation data provided notable improvements in image classification accuracy. AVAILABILITY AND IMPLEMENTATION: Dataset is freely available at: https://goo.gl/cNM4EL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias da Mama , Crowdsourcing , Algoritmos , Técnicas Histológicas , Humanos
8.
J Transl Med ; 18(1): 334, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873298

RESUMO

BACKGROUND: African American women experience a twofold higher incidence of triple-negative breast cancer (TNBC) and are 40% more likely to die from breast cancer than women of other ethnicities. However, the molecular bases for the survival disparity in breast cancer remain unclear, and no race-specific therapeutic targets have been proposed. To address this knowledge gap, we performed a systematic analysis of the relationship between gene mRNA expression and clinical outcomes determined for The Cancer Genome Atlas (TCGA) breast cancer patient cohort. METHODS: The systematic differential analysis of mRNA expression integrated with the analysis of clinical outcomes was performed for 1055 samples from the breast invasive carcinoma TCGA PanCancer cohorts. A deep learning fully-convolutional model was used to determine the association between gene expression and tumor features based on breast cancer patient histopathological images. RESULTS: We found that more than 30% of all protein-coding genes are differentially expressed in White and African American breast cancer patients. We have determined a set of 32 genes whose overexpression in African American patients strongly correlates with decreased survival of African American but not White breast cancer patients. Among those genes, the overexpression of mitogen-activated protein kinase kinase 3 (MKK3) has one of the most dramatic and race-specific negative impacts on the survival of African American patients, specifically with triple-negative breast cancer. We found that MKK3 can promote the TNBC tumorigenesis in African American patients in part by activating of the epithelial-to-mesenchymal transition induced by master regulator MYC. CONCLUSIONS: The poor clinical outcomes in African American women with breast cancer can be associated with the abnormal elevation of individual gene expression. Such genes, including those identified and prioritized in this study, could represent new targets for therapeutic intervention. A strong correlation between MKK3 overexpression, activation of its binding partner and major oncogene MYC, and worsened clinical outcomes suggests the MKK3-MYC protein-protein interaction as a new promising target to reduce racial disparity in breast cancer survival.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Negro ou Afro-Americano/genética , Neoplasias da Mama/genética , Transformação Celular Neoplásica , Feminino , Humanos , Incidência , Neoplasias de Mama Triplo Negativas/genética , População Branca/genética
9.
Biol Proced Online ; 18: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839516

RESUMO

BACKGROUND: One of the most notable recent advances in electron microscopy (EM) was the development of genetically-encoded EM tags, including the fluorescent flavoprotein Mini-SOG (Mini-Singlet Oxygen Generator). Mini-SOG generates good EM contrast, thus providing a viable alternative to technically-demanding methods such as immuno-electron microcopy (immuno-EM). Based on the Mini-SOG technology, in this paper, we describe the construction, validation and optimization of a series of vectors which allow expression of Mini-SOG in the Drosophila melanogaster genetic model system. FINDINGS: We constructed a Mini-SOG tag that has been codon-optimized for expression in Drosophila (DMS tag) using PCR-mediated gene assembly. The photo-oxidation reaction triggered by DMS was then tested using these vectors in Drosophila cell lines. DMS tag did not affect the subcellular localization of the proteins we tested. More importantly, we demonstrated the utility of the DMS tag for EM in Drosophila by showing that it can produce robust photo-oxidation reactions in the presence of blue light and the substrate DAB; the resultant electron micrographs contain electron-dense regions corresponding to the protein of interest. The vectors we generated allow protein tagging at both termini, for constitutive and inducible protein expression, as well as the generation of transgenic lines by P-element transformation. CONCLUSIONS: We demonstrated the feasibility of Mini-SOG tagging in Drosophila. The constructed vectors will no doubt be a useful molecular tool for genetic tagging to facilitate high-resolution localization of proteins in Drosophila by electron microscopy.

10.
J Cancer Educ ; 29(3): 536-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24395632

RESUMO

The use of Web 2.0 tools in education and health care has received heavy attention over the past years. Over two consecutive years, Children's Cancer Hospital - Egypt 57357 (CCHE 57357), in collaboration with Egyptian universities, student bodies, and NGOs, conducted a summer course that supports undergraduate medical students to cross the gap between clinical practice and clinical research. This time, there was a greater emphasis on reaching out to the students using social media and other Web 2.0 tools, which were heavily used in the course, including Google Drive, Facebook, Twitter, YouTube, Mendeley, Google Hangout, Live Streaming, Research Electronic Data Capture (REDCap), and Dropbox. We wanted to investigate the usefulness of integrating Web 2.0 technologies into formal educational courses and modules. The evaluation survey was filled in by 156 respondents, 134 of whom were course candidates (response rate = 94.4 %) and 22 of whom were course coordinators (response rate = 81.5 %). The course participants came from 14 different universities throughout Egypt. Students' feedback was positive and supported the integration of Web 2.0 tools in academic courses and modules. Google Drive, Facebook, and Dropbox were found to be most useful.


Assuntos
Pesquisa Biomédica/educação , Instrução por Computador/métodos , Educação de Graduação em Medicina/métodos , Mídias Sociais , Estudantes de Medicina/estatística & dados numéricos , Centros Médicos Acadêmicos , Países em Desenvolvimento , Egito , Humanos , Indústrias
11.
NPJ Breast Cancer ; 10(1): 52, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942745

RESUMO

Tumor-Infiltrating Lymphocytes (TILs) have strong prognostic and predictive value in breast cancer, but their visual assessment is subjective. To improve reproducibility, the International Immuno-oncology Working Group recently released recommendations for the computational assessment of TILs that build on visual scoring guidelines. However, existing resources do not adequately address these recommendations due to the lack of annotation datasets that enable joint, panoptic segmentation of tissue regions and cells. Moreover, existing deep-learning methods focus entirely on either tissue segmentation or cell nuclei detection, which complicates the process of TILs assessment by necessitating the use of multiple models and reconciling inconsistent predictions. We introduce PanopTILs, a region and cell-level annotation dataset containing 814,886 nuclei from 151 patients, openly accessible at: sites.google.com/view/panoptils . Using PanopTILs we developed MuTILs, a neural network optimized for assessing TILs in accordance with clinical recommendations. MuTILs is a concept bottleneck model designed to be interpretable and to encourage sensible predictions at multiple resolutions. Using a rigorous internal-external cross-validation procedure, MuTILs achieves an AUROC of 0.93 for lymphocyte detection and a DICE coefficient of 0.81 for tumor-associated stroma segmentation. Our computational score closely matched visual scores from 2 pathologists (Spearman R = 0.58-0.61, p < 0.001). Moreover, computational TILs scores had a higher prognostic value than visual scores, independent of TNM stage and patient age. In conclusion, we introduce a comprehensive open data resource and a modeling approach for detailed mapping of the breast tumor microenvironment.

12.
Nat Med ; 30(1): 85-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012314

RESUMO

Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which are qualitative and do not account for noncancerous elements within the tumor microenvironment. Here we present the Histomic Prognostic Signature (HiPS), a comprehensive, interpretable scoring of the survival risk incurred by breast tumor microenvironment morphology. HiPS uses deep learning to accurately map cellular and tissue structures to measure epithelial, stromal, immune, and spatial interaction features. It was developed using a population-level cohort from the Cancer Prevention Study-II and validated using data from three independent cohorts, including the Prostate, Lung, Colorectal, and Ovarian Cancer trial, Cancer Prevention Study-3, and The Cancer Genome Atlas. HiPS consistently outperformed pathologists in predicting survival outcomes, independent of tumor-node-metastasis stage and pertinent variables. This was largely driven by stromal and immune features. In conclusion, HiPS is a robustly validated biomarker to support pathologists and improve patient prognosis.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Ensaios Clínicos como Assunto , Microambiente Tumoral/genética , Processamento de Imagem Assistida por Computador , Aprendizado Profundo
13.
Res Sq ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37293118

RESUMO

Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which is qualitative and does not account for non-cancerous elements within the tumor microenvironment (TME). We present the Histomic Prognostic Signature (HiPS), a comprehensive, interpretable scoring of the survival risk incurred by breast TME morphology. HiPS uses deep learning to accurately map cellular and tissue structures in order to measure epithelial, stromal, immune, and spatial interaction features. It was developed using a population-level cohort from the Cancer Prevention Study (CPS)-II and validated using data from three independent cohorts, including the PLCO trial, CPS-3, and The Cancer Genome Atlas. HiPS consistently outperformed pathologists' performance in predicting survival outcomes, independent of TNM stage and pertinent variables. This was largely driven by stromal and immune features. In conclusion, HiPS is a robustly validated biomarker to support pathologists and improve prognosis.

14.
Blood Rev ; 62: 101134, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758527

RESUMO

Chronic lymphocytic leukemia (CLL) is a B cell neoplasm characterized by the accumulation of aberrant monoclonal B lymphocytes. CLL is the predominant type of leukemia in Western countries, accounting for 25% of cases. Although many patients remain asymptomatic, a subset may exhibit typical lymphoma symptoms, acquired immunodeficiency disorders, or autoimmune complications. Diagnosis involves blood tests showing increased lymphocytes and further examination using peripheral blood smear and flow cytometry to confirm the disease. With the significant advancements in machine learning (ML) and artificial intelligence (AI) in recent years, numerous models and algorithms have been proposed to support the diagnosis and classification of CLL. In this review, we discuss the benefits and drawbacks of recent applications of ML algorithms in the diagnosis and evaluation of patients diagnosed with CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/patologia , Inteligência Artificial , Linfócitos B/patologia , Linfoma/patologia , Aprendizado de Máquina
15.
Cancers (Basel) ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894372

RESUMO

The accurate diagnosis of small-cell lung cancer (SCLC) is crucial, as treatment strategies differ from those of other lung cancers. This systematic review aims to identify proteins differentially expressed in SCLC compared to normal lung tissue, evaluating their potential utility in diagnosing and prognosing the disease. Additionally, the study identifies proteins differentially expressed between SCLC and large cell neuroendocrine carcinoma (LCNEC), aiming to discover biomarkers distinguishing between these two subtypes of neuroendocrine lung cancers. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a comprehensive search was conducted across PubMed/MEDLINE, Scopus, Embase, and Web of Science databases. Studies reporting proteomics information and confirming SCLC and/or LCNEC through histopathological and/or cytopathological examination were included, while review articles, non-original articles, and studies based on animal samples or cell lines were excluded. The initial search yielded 1705 articles, and after deduplication and screening, 16 articles were deemed eligible. These studies revealed 117 unique proteins significantly differentially expressed in SCLC compared to normal lung tissue, along with 37 unique proteins differentially expressed between SCLC and LCNEC. In conclusion, this review highlights the potential of proteomics technology in identifying novel biomarkers for diagnosing SCLC, predicting its prognosis, and distinguishing it from LCNEC.

16.
Diabetes Metab Syndr Obes ; 16: 4157-4167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146450

RESUMO

Purpose: Short sleep duration and quality are increasingly common in the Middle East and North Africa (MENA) region and has been linked to metabolic syndrome, which increases the risk of cardiovascular disease and diabetes. This study aimed to examine the link between short sleep duration and metabolic syndrome. Patients and Methods: We conducted a case-control study using data from Qatar Biobank, with 1000 participants categorized into two groups: less than 7 hours of sleep (n=500) and 7 or more hours of sleep (n=500). Metabolic syndrome was defined using WHO criteria, and logistic regression analysis adjusted for age and gender. Results: There was a higher proportion of individuals with MetS in the short sleep duration group compared to the normal sleep duration group (22.8% vs 15.8%, respectively). The multivariable regression showed that short sleep duration was associated with metabolic syndrome (OR 1.91, 95% CI: 1.14-3.20, P=0.014) and having 1-2 components of metabolic syndrome (OR 1.91, 95% CI: 1.14-3.20, P=0.014), particularly in males (OR: 2.30, 95% CI: 1.07-4.94, P=0.032). Being overweight (OR 2.17, 95% CI: 1.30-3.63, P=0.003) was also associated with a shorter sleep duration. BMI was identified as the main contributor to the association between short sleep duration and metabolic syndrome, while diabetes played a minor role. Conclusion: Short sleep duration was associated with metabolic syndrome in Qatar, particularly in males.

17.
Blood Rev ; 61: 101102, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37355428

RESUMO

Artificial intelligence (AI) is rapidly becoming an established arm in medical sciences and clinical practice in numerous medical fields. Its implications have been rising and are being widely used in research, diagnostics, and treatment options for many pathologies, including sickle cell disease (SCD). AI has started new ways to improve risk stratification and diagnosing SCD complications early, allowing rapid intervention and reallocation of resources to high-risk patients. We reviewed the literature for established and new AI applications that may enhance management of SCD through advancements in diagnosing SCD and its complications, risk stratification, and the effect of AI in establishing an individualized approach in managing SCD patients in the future. Aim: to review the benefits and drawbacks of resources utilizing AI in clinical practice for improving the management for SCD cases.

18.
Cancers (Basel) ; 16(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201493

RESUMO

Myelodysplastic syndrome (MDS) is composed of diverse hematological malignancies caused by dysfunctional stem cells, leading to abnormal hematopoiesis and cytopenia. Approximately 30% of MDS cases progress to acute myeloid leukemia (AML), a more aggressive disease. Early detection is crucial to intervene before MDS progresses to AML. The current diagnostic process for MDS involves analyzing peripheral blood smear (PBS), bone marrow sample (BMS), and flow cytometry (FC) data, along with clinical patient information, which is labor-intensive and time-consuming. Recent advancements in machine learning offer an opportunity for faster, automated, and accurate diagnosis of MDS. In this review, we aim to provide an overview of the current applications of AI in the diagnosis of MDS and highlight their advantages, disadvantages, and performance metrics.

19.
Front Oncol ; 13: 1330977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125946

RESUMO

Acute lymphoblastic leukemia (ALL) poses a significant health challenge, particularly in pediatric cases, requiring precise and rapid diagnostic approaches. This comprehensive review explores the transformative capacity of deep learning (DL) in enhancing ALL diagnosis and classification, focusing on bone marrow image analysis. Examining ten studies conducted between 2013 and 2023 across various countries, including India, China, KSA, and Mexico, the synthesis underscores the adaptability and proficiency of DL methodologies in detecting leukemia. Innovative DL models, notably Convolutional Neural Networks (CNNs) with Cat-Boosting, XG-Boosting, and Transfer Learning techniques, demonstrate notable approaches. Some models achieve outstanding accuracy, with one CNN reaching 100% in cancer cell classification. The incorporation of novel algorithms like Cat-Swarm Optimization and specialized CNN architectures contributes to superior classification accuracy. Performance metrics highlight these achievements, with models consistently outperforming traditional diagnostic methods. For instance, a CNN with Cat-Boosting attains 100% accuracy, while others hover around 99%, showcasing DL models' robustness in ALL diagnosis. Despite acknowledged challenges, such as the need for larger and more diverse datasets, these findings underscore DL's transformative potential in reshaping leukemia diagnostics. The high numerical accuracies accentuate a promising trajectory toward more efficient and accurate ALL diagnosis in clinical settings, prompting ongoing research to address challenges and refine DL models for optimal clinical integration.

20.
J Matern Fetal Neonatal Med ; 35(25): 5199-5203, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33840341

RESUMO

OBJECTIVE: to assess the impact of manual removal of the placenta and intrauterine cleaning during elective cesarean delivery on maternal infectious morbidity and blood loss. METHODS: This prospective multicenter trial was conducted on 436 pregnant women at term who were intended for elective cesarean delivery and allocated into four groups; group 1 (n = 110) who underwent manual removal of the placenta with intrauterine cleaning, group 2 (n = 106) who underwent manual removal of the placenta without intrauterine cleaning, group 3 (n = 108) who underwent spontaneous placental delivery with intrauterine cleaning and group 4 (n = 112) who underwent spontaneous placental delivery without intrauterine cleaning. Maternal operative blood loss, the rate of endometritis and surgical site infections (SSIs) was assessed and recorded. RESULTS: There was no significant difference between the four groups regarding drop of hemoglobin concentration, drop of hematocrit value, re-operation, re-admission to hospital, duration of hospital stay, the rate of endometritis and SSIs as well as maternal acceptability in terms of overall discomfort, overall satisfaction with delivery and recommendation to other women (p > .05). Intrauterine cleaning was associated with a significantly shorter duration of discharge of lochia and rapid return to daily activity compared to non-intrauterine cleaning (p < .05). CONCLUSION: Manual removal of the placenta and intrauterine cleaning have no deleterious impact on maternal blood loss and infectious morbidity after elective cesarean section. Also, intrauterine cleaning was associated with faster cessation of lochia and faster return to daily activity.


Assuntos
Cesárea , Endometrite , Feminino , Gravidez , Humanos , Cesárea/efeitos adversos , Placenta/cirurgia , Endometrite/epidemiologia , Endometrite/etiologia , Endometrite/prevenção & controle , Estudos Prospectivos , Morbidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA