Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(5): e202301915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403833

RESUMO

Two green inhibitors extracted from an endemic species (Origanum grosii (Og)) using two solvents of different polarity (water and ethanol), OgW (aqueous extract) and OgE (ethanolic extract), were used for the anticorrosion of mild steel (M steel) in a 1 M HCl medium. Anticorrosive performance of OgW and OgE was assessed using standard electrochemical techniques, EIS/PDP measurements, weight loss method and SEM/EDX surface analysis. The results show that OgW achieves a maximum inhibition efficiency of 92 % and that the extract in aqueous medium (more polar) is more efficient than the extract in ethanolic medium (less polar). Both extracts act as mixed inhibitors and their corrosion process is predominantly governed by a charge transfer. Concentration and temperature effect was studied and shown that they are two antagonistic parameters for the evolution of inhibitory effectiveness of both OgW and OgE. The adsorption isotherms of the two inhibitors OgE and OgW obey to the Langmuir adsorption model. Moreover, the examination of SEM images and EDX spectra support a deposit of both extracts on the metal surface by an adsorption phenomenon. Besides, theoretical approach of the molecular structures of the major compounds M-OgW and M-OgE and inhibition efficiency was examined via DFT calculations and molecular dynamics simulations and it was consistent with the experimental findings.


Assuntos
Ácido Clorídrico , Origanum , Extratos Vegetais , Aço , Adsorção , Corrosão , Ácido Clorídrico/química , Estrutura Molecular , Origanum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Aço/química , Propriedades de Superfície , Etanol/química
2.
Toxicol Rep ; 13: 101685, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39056093

RESUMO

For millennia, various cultures have utilized cannabis for food, textile fiber, ethno-medicines, and pharmacotherapy, owing to its medicinal potential and psychotropic effects. An in-depth exploration of its historical, chemical, and therapeutic dimensions provides context for its contemporary understanding. The criminalization of cannabis in many countries was influenced by the presence of psychoactive cannabinoids; however, scientific advances and growing public awareness have renewed interest in cannabis-related products, especially for medical use. Described as a 'treasure trove,' cannabis produces a diverse array of cannabinoids and non-cannabinoid compounds. Recent research focuses on cannabinoids for treating conditions such as anxiety, depression, chronic pain, Alzheimer's, Parkinson's, and epilepsy. Additionally, secondary metabolites like phenolic compounds, terpenes, and terpenoids are increasingly recognized for their therapeutic effects and their synergistic role with cannabinoids. These compounds show potential in treating neuro and non-neuro disorders, and studies suggest their promise as antitumoral agents. This comprehensive review integrates historical, chemical, and therapeutic perspectives on cannabis, highlighting contemporary research and its vast potential in medicine.

3.
Toxicol Rep ; 13: 101713, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39262846

RESUMO

Beneficial cannabis use has sparked growing interest among researchers, leading to an increase in empirical studies exploring its phytochemistry and applications. However, understanding the overall research orientation remains limited. This study aims to bridge this gap by conducting a bibliometric analysis of 7841 documents published from 2012 to 2022. The analysis reveals an annual growth rate of 16.83 %, with a focus on medicine, pharmacology, toxicology, pharmaceutics, biochemistry, genetics, molecular biology, and neuroscience. Performance analysis highlights metrics of sources, countries, affiliations, and authors, while science mapping identifies keywords, thematic evolution, and citation/co-authorship patterns. Notably, Morocco, despite its limited initial contributions, has shown recent steady growth in cannabis research, with an annual growth rate of 14.31 % and a 51.72 % international collaborative rate. This study provides valuable insights into established fields and potential research directions in cannabis research, paving the way for a deeper understanding among the audience. With the changing legal status of cannabis, research is rapidly expanding, focusing on the plant's bioactive compounds, pharmacological properties, and therapeutic applications. The dominant subject areas are medicine, pharmacology, toxicology, pharmaceutics, biochemistry, genetics, molecular biology, and neuroscience, covering nearly 76 % of the studied papers. Despite limited initial contributions from African countries like Morocco due to legal restrictions, beneficial cannabis research is gaining interest. Future research should prioritize in-depth exploration of specific compounds, comparative studies of cannabis-based products, and rigorous clinical trials. Fostering international collaborations and bridging the gap between research and policymakers are crucial for harnessing the full potential of cannabis while mitigating potential risks. This study serves as a reference for researchers to identify current orientations, blind areas, and gaps in cannabis research, offering suggestions for future studies.

4.
Heliyon ; 10(10): e31253, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803909

RESUMO

The imidazole nucleus represents a significant group of heterocyclic molecules with diverse significance in the modern world due to its exploration potential and various pharmacological applications. The relevance of imidazole and its derivatives has gained popularity in recent years, especially in the production of commercial drugs and the treatment of various conditions. The imidazole nucleus is present in many natural compounds and widely distributed in essential amino acids, such as l-histidine, whose derivatives exhibit powerful pharmacological properties. In this review, we delve into the historical timeline and development of synthetic pathways for tri- and tetra-substituted imidazoles used in the renowned Radziszewski reaction. Furthermore, we explore various bacteriological applications documented in the literature, as well as current advances in preclinical approaches to imidazole-based drug discovery. Tri- or tetra-substituted imidazole derivatives show strong potential for new synthesis methods, such as reflux or microwave, as well as various biological activities.

5.
Acta Pharm ; 74(1): 81-99, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554388

RESUMO

This study aims to assess the chemical composition of the aqueous extract of Cistus albidus L. leaves, as well as the potential of aqueous and hydroethanol extracts of the leaves and seeds as analgesic, anti--inflammatory, and antioxidant agents. The contents of phenolics and inorganic constituents were determined in C. albidus seeds and leaves; antioxidant capacity was assessed by 3 complementary and diverse tests. The carrageenan-induced paw edema technique was used to investigate the anti-inflammatory effect in vivo, and albumin denaturation to evaluate the anti-inflammatory effect in vitro. The acetic acid-induced contortion test, the tail-flick test, and the plantar test were used to assess the analgesic effi cacy in vivo. Chemical analysis was performed by UPLC-MS/MS to quantify several phenolic compounds including catechin (1,627.6 mg kg-1), quercitrin (1,235.8 mg kg-1) and gallic acid (628. 2 mg kg-1). The ICP analysis revealed that potassium and calcium were the main inorganic components in the seeds and leaves of C. albidus. The hydroethanolic extract of the leaves showed the highest content of polyphenols/flavonoids, whereas the highest value of proantho cyanidins was detected in the aqueous extract of the seeds. All extracts showed potent antioxidant activity related to different phenolic compounds (quercetin, gallic acid, astragalin, catechin, and rutin). The aqueous extract of the leaves strongly inhibited paw edema (76.1 %) after 6 h of treatment and showed maximal inhibition of protein denaturation (191.0 µg mL-1 for 50 % inhibition) and analgesic activity in different nociceptive models. The presented data reveal that C. albidus extracts potentially show antioxidant, anti-inflammatory, and analgesic activities that could confirm the traditional use of this plant.


Assuntos
Catequina , Cistus , Antioxidantes/análise , Cistus/química , Cromatografia Líquida , Catequina/efeitos adversos , Catequina/análise , Extratos Vegetais/química , Dor/induzido quimicamente , Dor/tratamento farmacológico , Espectrometria de Massas em Tandem , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fenóis/farmacologia , Ácido Gálico/efeitos adversos , Ácido Gálico/análise , Edema/induzido quimicamente , Edema/tratamento farmacológico , Folhas de Planta/química
6.
ADMET DMPK ; 11(2): 151-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325116

RESUMO

Various applications of electrochemical sensors and biosensors have been reported in many fields. These include pharmaceuticals, drug detection, cancer detection, and analysis of toxic elements in tap water. Electrochemical sensors are characterised by their low cost, ease of manufacture, rapid analysis, small size and ability to detect multiple elements simultaneously. They also allow the reaction mechanisms of analytes, such as drugs, to be taken into account, giving a first indication of their fate in the body or their pharmaceutical preparation. Several materials are used in the construction of sensors, such as graphene, fullerene, carbon nanotubes, carbon graphite, glassy carbon, carbon clay, graphene oxide, reduced graphene oxide, and metals. This review covers the most recent progress in electrochemical sensors used to analyze drugs and metabolites in pharmaceutical and biological samples. We have highlighted carbon paste electrodes (CPE), glassy carbon electrodes (GCE), screen-printed carbon electrodes (SPCE) and reduced graphene oxide electrodes (rGOE). The sensitivity and analysis speed of electrochemical sensors can be improved by modifying them with conductive materials. Different materials used for modification have been reported and demonstrated, such as molecularly imprinted polymers, multiwalled carbon nanotubes, fullerene (C60), iron(III) nanoparticles (Fe3O4NP), and CuO micro-fragments (CuO MF). Manufacturing strategies and the detection limit of each sensor have been reported.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39281807

RESUMO

Background: Medicinal plants have long played an integral role in traditional healing systems and are crucial for meeting primary healthcare needs. This study aimed to investigate the use of medicinal plants in phytotherapy in the Ketama region of Northern Morocco. Methods: Ethnobotanical data and ancestral knowledge regarding plants were collected through a field survey conducted from August 2019 to July 2021. The data were gathered using a standardized questionnaire, as well as through semistructured interviews and focus groups. Various ethnobotanical indices were applied to analyse the information collected. Results: A comprehensive inventory identified a total of 81 plant species, belonging to 40 families and 65 genera. These species are used primarily to treat a variety of diseases. Notably, digestive disorders ranked first among the diseases treated, with an ICF value of 0.618. Rosmarinus officinalis L., Thymus serpyllum L., and Origanum compactum Benth exhibited the highest UV values among medicinal plants. Leaves were the most used part of the plant part (50.28%), and the decoction method was the most recommended preparation, with oral administration being the preferred mode of application of the remedy. Conclusion: The Ketama region boasts a rich abundance of medicinal and aromatic plants, as evident from the quantitative analysis highlighting the significant usage of Rosmarinus officinalis L., Thymus serpyllum L., and Origanum compactum Benth. by the local population. However, further research in the form of pharmacological studies is necessary to validate their therapeutic effects.

8.
Carbohydr Polym ; 276: 118737, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823773

RESUMO

In this paper, a new deep eutectic solvent (DES) has been successfully synthesized that is based on benzyltriethylammonium bromide as a hydrogen bond acceptor (HBA) and urea as a hydrogen bond donor (HBD). However, its usability in modifying cellulose derivatives, especially acylating hydroxyethylcellulose (HEC) was investigated. The chemical modification (acetylation) of HEC was carried out in BTEAB/urea DES system without any additional conventional solvent or catalyst. However, the proposed structure of acetylated HEC (HECA) was confirmed according to the structural spectra analyses FTIR-ATR, 1H, 13C, and APT-NMR. The crystalline behavior of acetylated and unmodified HEC in the DES system has been evaluated using XRD patterns, where the thermal stability was evaluated basing on the TD-TGA thermograms. Hence, SEM images and EDX spectra were recorded to prove the changes that are expected at the morphological level and elemental profile. Yet, the nanometric sheets aspect was observed. The Functional Density Theory (DFT) was investigated as a useful computational tool to understand mechanism and donor-acceptor interactions. The topological parameters (electron density Laplacian, kinetic energy density, potential energy density, and energy density) at the bond critical points (BCP), between TBEAB and urea, are deducted according to Quantum Bader's theory, and Atoms-in-molecules (AIM). The non-covalent interactions and steric effect in the DES system were studied using the reduced density gradient isosurface (RDG). Theoretical and computational calculations revealed that the H-bonds and the electrostatic coexist, as predominant interactions in the BTEAB-based DES resulting chemical structure, and mechanism formation. The physical interactions between the component entities of DES lead to a new equilibrium that is more stable than that of HBA and HBD in their separate states.

9.
Carbohydr Polym ; 180: 156-167, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29103491

RESUMO

In this paper, new quaternized cellulose derivative based on Ethylenediaminetetraacetic acid (EDTA) and hydroxyethyl cellulose (HEC) is successfully prepared in homogeneous medium. The resulted product is characterized using spectroscopy techniques (FTIR, 1H NMR and 13C NMR). At the supramolecular level, the x-ray patterns show that a high hydrogen bond density occurs by grafting EDTA on the HEC fibers. The new adsorbent (HEC-EDTA) shows a high adsorption capacity of heavy metals (Pb (II) and Cu (II)) from aqueous metals solutions. The adsorption of the both metal ions follows the pseudo-second-order kinetic model, while the adsorption isotherms are well described by the Langmuir model. The qm values are determined for Pb (II) and Cu (II), respectively. For each metal, the equilibrium adsorption time is found to be 30min. Moreover, the HEC-EDTA adsorption capacity is strongly dependent on the pH value; and the adsorption is favorable for pH values ​​between 4 and 6. Moreover, the results show a high affinity toward Cu (II) than Pb (II).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA