Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Hematol ; 98(3): 449-463, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594167

RESUMO

The treatment of patients with relapsed or refractory lymphoid neoplasms represents a significant clinical challenge. Here, we identify the pro-survival BCL-2 protein family member MCL-1 as a resistance factor for the BCL-2 inhibitor venetoclax in non-Hodgkin lymphoma (NHL) cell lines and primary NHL samples. Mechanistically, we show that the antibody-drug conjugate polatuzumab vedotin promotes MCL-1 degradation via the ubiquitin/proteasome system. This targeted MCL-1 antagonism, when combined with venetoclax and the anti-CD20 antibodies obinutuzumab or rituximab, results in tumor regressions in preclinical NHL models, which are sustained even off-treatment. In a Phase Ib clinical trial (NCT02611323) of heavily pre-treated patients with relapsed or refractory NHL, 25/33 (76%) patients with follicular lymphoma and 5/17 (29%) patients with diffuse large B-cell lymphoma achieved complete or partial responses with an acceptable safety profile when treated with the recommended Phase II dose of polatuzumab vedotin in combination with venetoclax and an anti-CD20 antibody.


Assuntos
Imunoconjugados , Linfoma não Hodgkin , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/patologia , Rituximab/uso terapêutico , Imunoconjugados/uso terapêutico
2.
Breast Cancer Res Treat ; 155(3): 431-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26860947

RESUMO

The central role of HER2 as the disease driver and HER3 as its essential partner has made them rational targets for the treatment of HER2-amplifed breast cancers, and there is considerable interest in developing highly effective treatment regimens for this disease that consist of targeted therapies alone. Much of these efforts are focused on dual targeting approaches, particularly dual targeting of the HER2-HER3 tumor driver complex itself, or vertical combinations that target downstream PI3K or Akt in addition to HER2. There is also potential in lateral combinations based on evidence implicating cross-talk with other membrane receptor systems, particularly integrins, and such lateral combinations can potentially involve either HER2 or HER3. We established a preclinical model of targeting HER3 using doxycycline-inducible shRNA and determined the efficacy of a ß1 integrin inhibitor in combination with targeting HER3. We report that targeting HER3 and ß1 integrin provides a particularly effective combination therapy approach for HER2-amplified cancers, surpassing the combination of HER2 and ß1 integrin targeting, and evading some of the safety concerns associated with direct HER2-targeting. This further validates HER3 as a major hub mediating the tumorigenic functions of HER2 and identifies it as a high value target for lateral combination therapy strategies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxiciclina/administração & dosagem , Integrina beta1/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Integrina beta1/efeitos dos fármacos , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
3.
Biochem J ; 447(3): 417-25, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22853430

RESUMO

HER2 (human epidermal growth factor receptor-2)-amplified tumours are characterized by constitutive signalling via the HER2-HER3 co-receptor complex. Although phosphorylation activity is driven entirely by the HER2 kinase, signal volume generated by the complex is under the control of HER3, and a large capacity to increase its signalling output accounts for the resiliency of the HER2-HER3 tumour driver and accounts for the limited efficacies of anti-cancer drugs designed to target it. In the present paper we describe deeper insights into the dynamic nature of HER3 signalling. Signalling output by HER3 is under several modes of regulation, including transcriptional, post-transcriptional, translational, post-translational and localizational control. These redundant mechanisms can each increase HER3 signalling output and are engaged in various degrees depending on how the HER3/PI3K (phosphoinositide 3-kinase)/Akt/mTOR (mammalian target of rapamycin) signalling network is disturbed. The highly dynamic nature of HER3 expression and signalling, and the plurality of downstream elements and redundant mechanisms that function to ensure HER3 signalling throughput identify HER3 as a major signalling hub in HER2-amplified cancers and a highly resourceful guardian of tumorigenic signalling in these tumours.


Assuntos
Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Regulação para Baixo , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Biossíntese de Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica , Regulação para Cima
4.
Semin Cell Dev Biol ; 21(9): 944-50, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20816829

RESUMO

Many types of human cancer are characterized by deregulation of the human epidermal growth factor receptor (HER) family of tyrosine kinase receptors. In some cancers, genomic events causing overactivity of individual HER family members are etiologically linked with the pathogenesis of these cancers, and constitute the driving signaling function underlying their tumorigenic behavior. HER3 stands out among this family as the only member lacking catalytic kinase function. Cancers with driving HER3 amplifications or mutations have not been found, and studies of its expression in tumors have been only weakly provocative. However, substantial evidence, predominantly from experimental models, now suggest that its non-catalytic functions are critically important in many cancers driven by its' HER family partners. Furthermore, new insights into the mechanism of activation in the HER family has provided clear evidence of functionality in the HER3 kinase domain. The convergence of structural, mechanistic, and experimental evidence highlighting HER3 functions that may be critical in tumorigenesis have now led to renewed efforts towards identification of cancers or subtypes of cancers wherein HER3 function may be important in tumor progression or drug resistance. It appears now that its failure to earn the traditional definition of an oncogene has allowed the tumor promoting functions of HER3 to elude the effects of cancer therapeutics. But experimental science has now unmasked the unpretentious role of HER3 in cancer biology, and the next generation of cancer therapies will undoubtedly perform much better because of it.


Assuntos
Neoplasias/tratamento farmacológico , Receptor ErbB-3/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/química , Receptor ErbB-3/genética , Transdução de Sinais
5.
Microvasc Res ; 76(1): 15-22, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18440031

RESUMO

Epidermal growth factor receptor (EGFR) targeting agents such as kinase inhibitors reduce tumor growth and progression. We have previously reported that EGFR is not only expressed by the tumor cells but by the tumor endothelial cells (EC) as well (Amin, D. N., Hida, K., Bielenberg, D. R., Klagsbrun, M., 2006. Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res. 66, 2173-80). Thus, targeting tumor blood vessel EGFR may be a viable strategy for tumor growth inhibition. We describe here a melanoma xenograft model where the tumor cells express very little or no EGFR but the tumor blood vessels express activated EGFR. The EGFR kinase inhibitor, gefitinib (Iressa), retarded tumor growth with a size decrease of 38% compared to control mice, ostensibly due to targeting of the blood vessels. EC were isolated from tumors of gefitinib-treated mice. These EC were unable to proliferate in response to EGF and displayed relatively weaker activation of MAPK and AKT signaling in response to EGF compared to tumor EC isolated from vehicle-treated mice. In contrast, the tumor EC from gefitinib-treated mice expressed higher levels of VEGFR-2 both at the mRNA and protein level. In addition, these cells were less sensitive to EGFR kinase inhibitors in vitro but more sensitive to a VEGFR-2 kinase inhibitor. These results suggest that in tumor EC from gefitinib-treated mice there is a switch from dependence on EGFR activity to signaling via VEGFR-2. Our data provide a molecular rationale for combination therapies targeting both EGF and VEGF signaling on the tumor vasculature.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptores ErbB/metabolismo , Neoplasias Experimentais/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cinamatos/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gefitinibe , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Neuropilina-1/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo , Tirfostinas/farmacologia
6.
Cancer Res ; 66(4): 2173-80, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16489018

RESUMO

Epidermal growth factor (EGF) receptor family members are expressed by tumor cells and contribute to tumor progression. The expression and activity of EGF receptors in endothelial cells are less well characterized. Analysis of tumor-derived endothelial cells showed that they express EGFR, ErbB2, and ErbB4, whereas their normal counterparts express ErbB2, ErbB3, and ErbB4. The gain in expression of EGFR and the loss of ErbB3 expression in tumor vasculature was also observed in vivo. As a consequence of their expressing EGFR, tumor endothelial cells responded to EGF and other EGF family members by activating both EGFR and ErbB2, by activating the downstream mitogen-activated protein kinase pathway, and by enhanced proliferation. On the other hand, normal endothelial cells did not respond to EGF but instead were responsive to neuregulin (NRG), a ligand for ErbB3 and ErbB4. NRG activated ErbB3 in normal endothelial cells and inhibited growth of these cells. In contrast, tumor endothelial cells, which do not express ErbB3, were not growth inhibited by NRG. Furthermore, due to their expression of EGFR, tumor endothelial cells, unlike normal endothelial cells, are direct targets for EGFR kinase inhibitors. These low-molecular-weight compounds block EGF-induced EGFR activation and proliferation of tumor endothelial cells. These results suggest that a gain of EGF-induced endothelial cell proliferation, and loss of NRG-induced growth inhibition in tumor endothelial cells constitutes a switch that promotes tumor angiogenesis. In addition, these results suggest that EGFR kinase inhibitors may be effective for antiangiogenesis therapy by specifically targeting the tumor, but not the normal, vasculature.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/biossíntese , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-3/biossíntese , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Feminino , Humanos , Melanoma/irrigação sanguínea , Melanoma/enzimologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/enzimologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
7.
Cancer Res ; 64(22): 8249-55, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15548691

RESUMO

Tumor angiogenesis is necessary for solid tumor progression and metastasis. Tumor blood vessels have been shown to differ from normal counterparts, for example, by changes in morphology. An important concept in tumor angiogenesis is that tumor endothelial cells are assumed to be genetically normal, although these endothelial cells are structurally and functionally abnormal. However, we hypothesized that given the phenotypic differences between tumor and normal blood vessels, there may be genotypic alterations as well. Mouse endothelial cells were isolated from two different human tumor xenografts, melanoma and liposarcoma, and from two normal endothelial cell counterparts, skin and adipose. Tumor-associated endothelial cells expressed typical endothelial cell markers, such as CD31. They had relatively large, heterogeneous nuclei. Unexpectedly, tumor endothelial cells were cytogenetically abnormal. Fluorescence in situ hybridization (FISH) analysis showed that freshly isolated uncultured tumor endothelial cells were aneuploid and had abnormal multiple centrosomes. The degree of aneuploidy was exacerbated by passage in culture. Multicolor FISH indicated that the structural chromosomal aberrations in tumor endothelial cells were heterogeneous, indicating that the cytogenetic alterations were not clonal. There was no evidence of human tumor-derived chromosomal material in the mouse tumor endothelial cells. In marked contrast, freshly isolated normal skin and adipose endothelial cells were diploid, had normal centrosomes, and remained cytogenetically stable in culture even up to 20 passages. FISH analysis of tumor sections also showed endothelial cell aneuploidy. We conclude that tumor endothelial cells can acquire cytogenetic abnormalities while in the tumor microenvironment.


Assuntos
Aberrações Cromossômicas , Endotélio Vascular/ultraestrutura , Neoplasias Experimentais/irrigação sanguínea , Aneuploidia , Animais , Sequência de Bases , Centrossomo , Primers do DNA , Hibridização in Situ Fluorescente , Cariotipagem , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Oncogene ; 23(7): 1428-38, 2004 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-14973552

RESUMO

Overexpression of ErbB2 and ErbB4 receptors in breast cancers may be accompanied by contrasting clinical outcomes. To investigate the molecular mechanisms contributing to these differences, we undertook a comparative study of gene expression regulated by the two receptors. Agonistic antibodies were employed to activate ErbB2 and ErbB4 in isolation from the other ErbBs in breast cancer cells. Gene expression profiling using a 16 755-gene oligonucleotide array was performed to identify transcriptional targets of receptor activation. Our results indicate that, in the same cell line, ErbB2 and ErbB4 activation influence gene transcription differentially. Although there are genes that are regulated by signaling from both receptors, there are also receptor-specific targets that are preferentially regulated by each receptor. We further show that two ligands acting via the same receptor homodimer may activate different subsets of genes. Many of the induced genes are hitherto unidentified targets of ErbB signaling. These include ErbB4 targets EPS15R, GATA4, and RAB2 and ErbB2-activated HRY/HES1 and PPAP2A. Targets of ErbB2 homodimer signaling may be especially important as markers in breast cancer, where ErbB2 homodimerization mediated by overexpression and ligand-independent activation is common.


Assuntos
Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Receptor ErbB-2/genética , Transcrição Gênica/fisiologia , Neoplasias da Mama/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Ligantes , Análise de Sequência com Séries de Oligonucleotídeos , Receptor ErbB-2/biossíntese , Receptor ErbB-4 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Regulação para Cima
9.
Mol Cancer Ther ; 14(12): 2805-17, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438156

RESUMO

The requisite role of HER3 in HER2-amplified cancers is beyond what would be expected as a dimerization partner or effector substrate and it exhibits a substantial degree of resiliency that mitigates the effects of HER2-inhibitor therapies. To better understand the roots of this resiliency, we conducted an in-depth chemical-genetic interrogation of the signaling network downstream of HER3. A unique attribute of these tumors is the deregulation of TORC2. The upstream signals that ordinarily maintain TORC2 signaling are lost in these tumors, and instead TORC2 is driven by Akt. We find that in these cancers HER3 functions as a buffering arm of an Akt-TORC2 feed-forward loop that functions as a self-perpetuating module. This network topology alters the role of HER3 from a conditionally engaged ligand-driven upstream physiologic signaling input to an essential component of a concentric signaling throughput highly competent at preservation of homeostasis. The competence of this signaling topology is evident in its response to perturbation at any of its nodes. Thus, a critical pathophysiologic event in the evolution of HER2-amplified cancers is the loss of the input signals that normally drive TORC2 signaling, repositioning it under Akt dependency, and fundamentally altering the role of HER3. This reprogramming of the downstream network topology is a key aspect in the pathogenesis of HER2-amplified cancers and constitutes a formidable barrier in the targeted therapy of these cancers.


Assuntos
Neoplasias da Mama/genética , Complexos Multiproteicos/genética , Proteína Oncogênica v-akt/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Serina-Treonina Quinases TOR/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/biossíntese , Proteína Oncogênica v-akt/biossíntese , Multimerização Proteica/genética , Receptor ErbB-2/biossíntese , Receptor ErbB-3/biossíntese , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/biossíntese
10.
Oncotarget ; 6(38): 41123-33, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26516700

RESUMO

The clinical impact of HER2 inhibitors in the treatment of HER2-amplified breast cancers has been largely confined to chemotherapy combination regimens, since HER2 inhibitors appear to have very modest efficacies by themselves. This is due to the resilient nature of the functionally relevant HER2-HER3 tumor driver, bidirectionally linked with downstream PI3K/Akt pathway signaling, which can break through the inhibitory effects of most current HER2 or HER3 targeting therapies. A vertical combination approach targeting HER2 and a downstream pathway is a highly rational strategy for much more effective targeted therapy of this disease. However the importance of these downstream pathways in many human tissues and cells significant limits their usefulness as secondary targets by narrowing the therapeutic index of such combination therapies. The secondary target that can afford the highest potential for clinical translation is the one with the highest synergy against tumor cells in combination with HER2-inhibition, allowing the widest therapeutic index for clinical translation. We conducted a comparative analysis of such secondary targets in combination with the HER2 inhibitor lapatinib and find that the inhibition of mTor affords the highest degree of synergy. In further dissecting the individual roles of TORC1 and TORC2 complexes using pharmacologic and genetic tools, we find that it is specifically the inactivation of TORC2 that most synergistically enhances the efficacy of lapatinib. Although inhibitors that selectively target TORC2 are not currently available, these data make a compelling case for their development.


Assuntos
Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Lapatinib , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Naftiridinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/farmacologia , Quinolinas/farmacologia , Interferência de RNA , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
11.
PLoS One ; 10(4): e0121607, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901353

RESUMO

With the advent of high-throughput measurement techniques, scientists and engineers are starting to grapple with massive data sets and encountering challenges with how to organize, process and extract information into meaningful structures. Multidimensional spatio-temporal biological data sets such as time series gene expression with various perturbations over different cell lines, or neural spike trains across many experimental trials, have the potential to acquire insight about the dynamic behavior of the system. For this potential to be realized, we need a suitable representation to understand the data. A general question is how to organize the observed data into meaningful structures and how to find an appropriate similarity measure. A natural way of viewing these complex high dimensional data sets is to examine and analyze the large-scale features and then to focus on the interesting details. Since the wide range of experiments and unknown complexity of the underlying system contribute to the heterogeneity of biological data, we develop a new method by proposing an extension of Robust Principal Component Analysis (RPCA), which models common variations across multiple experiments as the lowrank component and anomalies across these experiments as the sparse component. We show that the proposed method is able to find distinct subtypes and classify data sets in a robust way without any prior knowledge by separating these common responses and abnormal responses. Thus, the proposed method provides us a new representation of these data sets which has the potential to help users acquire new insight from data.


Assuntos
Algoritmos , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Redes Neurais de Computação , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Lapatinib , Mutação/genética , Análise de Componente Principal , Análise Serial de Proteínas , Proteínas Proto-Oncogênicas c-akt/genética , Quinazolinas/farmacologia
12.
Cancer Res ; 70(9): 3823-32, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20388805

RESUMO

Id proteins (Id1 to Id4) are helix-loop-helix transcription factors that promote metastasis. It was found that Semaphorin 3F (SEMA3F), a potent inhibitor of metastasis, was repressed by Id2. High metastatic human tumor cell lines had relatively high amounts of Id2 and low SEMA3F levels compared with their low metastatic counterparts. No correlation between metastatic potential and expression of the other Id family members was observed. Furthermore, ectopic expression of Id2 in low metastatic tumor cells downregulated SEMA3F and, as a consequence, enhanced their ability to migrate and invade, two requisite steps of metastasis in vivo. Id2 overexpression was driven by the c-myc oncoprotein. SEMA3F was a direct target gene of the E47/Id2 pathway. Two E-box sites, which bind E protein transcription factors including E47, were identified in the promoter region of the SEMA3F gene. E47 directly activated SEMA3F promoter activity and expression and promoted SEMA3F biological activities, including filamentous actin depolymerization, inactivation of RhoA, and inhibition of cell migration. Silencing of SEMA3F inhibited the E47-induced SEMA3F expression and biological activities, confirming that these E47-induced effects were SEMA3F dependent. E47 did not induce expression of the other members of the SEMA3 family. Id2, a dominant-negative inhibitor of E proteins, abrogated the E47-induced SEMA3F expression and biological activities. Thus, high metastatic tumor cells overexpress c-myc, leading to upregulation of Id2 expression; the aberrantly elevated amount of Id2 represses SEMA3F expression and, as a consequence, enhances the ability of tumor cells to migrate and invade.


Assuntos
Movimento Celular/genética , Glioma/genética , Proteína 2 Inibidora de Diferenciação/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , Proteína 2 Inibidora de Diferenciação/biossíntese , Proteínas de Membrana/biossíntese , Proteínas de Membrana/deficiência , Metástase Neoplásica , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/deficiência , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição , Transcrição Gênica , Regulação para Cima
13.
Sci Transl Med ; 2(16): 16ra7, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20371474

RESUMO

About 25% of breast cancers harbor the amplified oncogene human epidermal growth factor receptor 2 (HER2) and are dependent on HER2 kinase function, identifying HER2 as a vulnerable target for therapy. However, HER2-HER3 signaling is buffered so that it is protected against a nearly two-log inhibition of HER2 catalytic activity; this buffering is driven by the negative regulation of HER3 by Akt. We have now further characterized HER2-HER3 signaling activity and have shown that the compensatory buffering prevents apoptotic tumor cell death from occurring as a result of the combined loss of mitogen-activated protein kinase (MAPK) and Akt signaling. To overcome the cancer cells' compensatory mechanisms, we coadministered a phosphoinositide 3-kinase-mammalian target of rapamycin inhibitor and a HER2 tyrosine kinase inhibitor (TKI). This treatment strategy proved equivocal because it induced both TKI-sensitizing and TKI-desensitizing effects and robust cross-compensation of MAPK and Akt signaling pathways. Noting that HER2-HER3 activity was completely inhibited by higher, fully inactivating doses of TKI, we then attempted to overcome the cells' compensatory buffering with this higher dose. This treatment crippled all downstream signaling and induced tumor apoptosis. Although such high doses of TKI are toxic in vivo when given continuously, we found that intermittent doses of TKI administered to mice produced sequential cycles of tumor apoptosis and ultimately complete tumor regression in mouse models, with little toxicity. This strategy for inactivation of HER2-HER3 tumorigenic activity is proposed for clinical testing.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Imidazóis/farmacologia , Lapatinib , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
14.
Exp Cell Res ; 309(1): 12-23, 2005 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15963498

RESUMO

Recent studies have suggested that autocrine production of Neuregulin (NRG), a growth factor that activates members of the Epidermal Growth Factor Receptor/ErbB family of proto-oncogenes, is sufficient for breast tumor initiation and progression. To elucidate the molecular mechanisms regulating these events, we undertook a global analysis of genes regulated by NRG in luminal mammary epithelial cell lines. Gene expression profiling of estrogen receptor-positive T47D cells exposed to NRG-1 revealed both previously identified and novel targets of NRG activation. Profiling of other estrogen receptor-positive breast cancer cell lines, MCF7 and SUM44, yielded a group of twenty-one genes whose transcripts are upregulated by NRG in all three lines tested. The NRG targets are FBJ murine osteosarcoma viral oncogene homolog B, Early growth response 1, v-jun avian sarcoma virus 17 oncogene homolog, Activating transcription factor 3, Homo sapiens cDNA FLJ31636 fis, Jun B proto-oncogene, Forkhead box C1, Platelet/endothelial cell adhesion molecule 1, NADPH-dependent retinol dehydrogenase/reductase, Dual specificity phosphatase 5, NGF inducible protein TIS21, Connective tissue growth factor, Jun D proto-oncogene, Serum response factor, Cullin 1, v-myc avian myelocytomatosis viral oncogene, Transient receptor potential channel 1, Low density lipoprotein receptor, Transforming growth factor beta 1, Nucleoporin 88 kDa, and Pleckstrin homology-like domain A1. Since NRG activation of these cells induces resistance to anti-hormonal therapy, the identified genes may provide clues to molecular events regulating mammary tumor progression and hormone independence.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes erbB-2 , Proteínas do Tecido Nervoso/genética , Linhagem Celular Tumoral , DNA Complementar/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , Neuregulina-1 , Análise de Sequência com Séries de Oligonucleotídeos , Proto-Oncogene Mas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA