RESUMO
Genome-wide association studies (GWASs) have identified numerous lung cancer risk-associated loci. However, decoding molecular mechanisms of these associations is challenging since most of these genetic variants are non-protein-coding with unknown function. Here, we implemented massively parallel reporter assays (MPRAs) to simultaneously measure the allelic transcriptional activity of risk-associated variants. We tested 2,245 variants at 42 loci from 3 recent GWASs in East Asian and European populations in the context of two major lung cancer histological types and exposure to benzo(a)pyrene. This MPRA approach identified one or more variants (median 11 variants) with significant effects on transcriptional activity at 88% of GWAS loci. Multimodal integration of lung-specific epigenomic data demonstrated that 63% of the loci harbored multiple potentially functional variants in linkage disequilibrium. While 22% of the significant variants showed allelic effects in both A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cell lines, a subset of the functional variants displayed a significant cell-type interaction. Transcription factor analyses nominated potential regulators of the functional variants, including those with cell-type-specific expression and those predicted to bind multiple potentially functional variants across the GWAS loci. Linking functional variants to target genes based on four complementary approaches identified candidate susceptibility genes, including those affecting lung cancer cell growth. CRISPR interference of the top functional variant at 20q13.33 validated variant-to-gene connections, including RTEL1, SOX18, and ARFRP1. Our data provide a comprehensive functional analysis of lung cancer GWAS loci and help elucidate the molecular basis of heterogeneity and polygenicity underlying lung cancer susceptibility.
Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Polimorfismo de Nucleotídeo Único , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Desequilíbrio de Ligação , Herança Multifatorial/genética , Linhagem Celular Tumoral , Alelos , Células A549RESUMO
The availability of single-cell sequencing (SCS) enables us to assess intra-tumor heterogeneity and identify cellular subclones without the confounding effect of mixed cells. Copy number aberrations (CNAs) have been commonly used to identify subclones in SCS data using various clustering methods, as cells comprising a subpopulation are found to share a genetic profile. However, currently available methods may generate spurious results (e.g., falsely identified variants) in the procedure of CNA detection, thereby diminishing the accuracy of subclone identification within a large, complex cell population. In this study, we developed a subclone clustering method based on a fused lasso model, referred to as FLCNA, which can simultaneously detect CNAs in single-cell DNA sequencing (scDNA-seq) data. Spike-in simulations were conducted to evaluate the clustering and CNA detection performance of FLCNA, benchmarking it against existing copy number estimation methods (SCOPE, HMMcopy) in combination with commonly used clustering methods. Application of FLCNA to a scDNA-seq data set of breast cancer revealed different genomic variation patterns in neoadjuvant chemotherapy-treated samples and pretreated samples. We show that FLCNA is a practical and powerful method for subclone identification and CNA detection with scDNA-seq data.
Assuntos
Variações do Número de Cópias de DNA , Análise de Sequência de DNA/métodos , Sequência de Bases , Análise por ConglomeradosRESUMO
Systemic insulin sensitivity shows a diurnal rhythm with a peak upon waking1,2. The molecular mechanism that underlies this temporal pattern is unclear. Here we show that the nuclear receptors REV-ERB-α and REV-ERB-ß (referred to here as 'REV-ERB') in the GABAergic (γ-aminobutyric acid-producing) neurons in the suprachiasmatic nucleus (SCN) (SCNGABA neurons) control the diurnal rhythm of insulin-mediated suppression of hepatic glucose production in mice, without affecting diurnal eating or locomotor behaviours during regular light-dark cycles. REV-ERB regulates the rhythmic expression of genes that are involved in neurotransmission in the SCN, and modulates the oscillatory firing activity of SCNGABA neurons. Chemogenetic stimulation of SCNGABA neurons at waking leads to glucose intolerance, whereas restoration of the temporal pattern of either SCNGABA neuron firing or REV-ERB expression rescues the time-dependent glucose metabolic phenotype caused by REV-ERB depletion. In individuals with diabetes, an increased level of blood glucose after waking is a defining feature of the 'extended dawn phenomenon'3,4. Patients with type 2 diabetes with the extended dawn phenomenon exhibit a differential temporal pattern of expression of REV-ERB genes compared to patients with type 2 diabetes who do not have the extended dawn phenomenon. These findings provide mechanistic insights into how the central circadian clock regulates the diurnal rhythm of hepatic insulin sensitivity, with implications for our understanding of the extended dawn phenomenon in type 2 diabetes.
Assuntos
Ritmo Circadiano , Neurônios GABAérgicos/fisiologia , Resistência à Insulina , Fígado/fisiologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Animais , Glicemia , Relógios Circadianos , Diabetes Mellitus Tipo 2 , Feminino , Glucose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fotoperíodo , Núcleo Supraquiasmático/citologia , Transmissão SinápticaRESUMO
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional regulation that affects mRNA stability, localization and translation efficiency. Previous pan-cancer studies have revealed that APA is frequently disrupted in cancer and is associated with patient outcomes. Yet, little is known about cancer type-specific APA alterations. Here, we integrated RNA-sequencing data from a Korean cohort (GEO: GSE40419) and The Cancer Genome Atlas (TCGA) to comprehensively analyze APA alterations in lung adenocarcinomas (LUADs). Comparing expression levels of core genes involved in polyadenylation, we find that overall, the set of 28 of 31 genes are upregulated, with CSTF2 particularly upregulated. We observed broad and recurrent APA changes in LUAD growth-promoting genes. In addition, we find enrichment of APA events in genes associated with known LUAD pathways and an increased heterogeneity in polyadenylation (polyA) site usage of proliferation-associated genes. Upon further investigation, we report smoking-specific APA changes are also highly relevant to LUAD development. Overall, our in-depth analysis reveals APA as an important driver for the molecular and clinical features of lung adenocarcinoma.
RESUMO
The X-chromosome is among the largest human chromosomes. It differs from autosomes by a number of important features including hemizygosity in males, an almost complete inactivation of one copy in females, and unique patterns of recombination. We used data from the Catalog of Published Genome Wide Association Studies to compare densities of the GWAS-detected SNPs on the X-chromosome and autosomes. The density of GWAS-detected SNPs on the X-chromosome is 6-fold lower compared to the density of the GWAS-detected SNPs on autosomes. Differences between the X-chromosome and autosomes cannot be explained by differences in the overall SNP density, lower X-chromosome coverage by genotyping platforms or low call rate of X-chromosomal SNPs. Similar differences in the density of GWAS-detected SNPs were found in female-only GWASs (e.g. ovarian cancer GWASs). We hypothesized that the lower density of GWAS-detected SNPs on the X-chromosome compared to autosomes is not a result of a methodological bias, e.g. differences in coverage or call rates, but has a real underlying biological reason-a lower density of functional SNPs on the X-chromosome versus autosomes. This hypothesis is supported by the observation that (i) the overall SNP density of X-chromosome is lower compared to the SNP density on autosomes and that (ii) the density of genic SNPs on the X-chromosome is lower compared to autosomes while densities of intergenic SNPs are similar.
Assuntos
Estudo de Associação Genômica Ampla , Cromossomo X , Masculino , Feminino , Humanos , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Common genetic variants associated with lung cancer have been well studied in the past decade. However, only 12.3% heritability has been explained by these variants. In this study, we investigate the contribution of rare variants (RVs) (minor allele frequency <0.01) to lung cancer through two large whole exome sequencing case-control studies. We first performed gene-based association tests using a novel Bayes Factor statistic in the International Lung Cancer Consortium, the discovery study (European, 1042 cases vs. 881 controls). The top genes identified are further assessed in the UK Biobank (European, 630 cases vs. 172 864 controls), the replication study. After controlling for the false discovery rate, we found two genes, CTSL and APOE, significantly associated with lung cancer in both studies. Single variant tests in UK Biobank identified 4 RVs (3 missense variants) in CTSL and 2 RVs (1 missense variant) in APOE stongly associated with lung cancer (OR between 2.0 and 139.0). The role of these genetic variants in the regulation of CTSL or APOE expression remains unclear. If such a role is established, this could have important therapeutic implications for lung cancer patients.
Assuntos
Neoplasias Pulmonares , Humanos , Teorema de Bayes , Sequenciamento do Exoma , Neoplasias Pulmonares/genética , Estudos de Casos e Controles , Apolipoproteínas E/genéticaRESUMO
Pulmonary surfactant is a lipoprotein synthesized and secreted by alveolar type II cells in lung. We evaluated the associations between 200,139 single nucleotide polymorphisms (SNPs) of 40 surfactant-related genes and lung cancer risk using genotyped data from two independent lung cancer genome-wide association studies. Discovery data included 18,082 cases and 13,780 controls of European ancestry. Replication data included 1,914 cases and 3,065 controls of European descent. Using multivariate logistic regression, we found novel SNPs in surfactant-related genes CTSH [rs34577742 C > T, odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.89-0.93, P = 7.64 × 10-9] and SFTA2 (rs3095153 G > A, OR = 1.16, 95% CI = 1.10-1.21, P = 1.27 × 10-9) associated with overall lung cancer in the discovery data and validated in an independent replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.80-0.96, P = 5.76 × 10-3) and SFTA2 (rs3095153 G > A, OR = 1.14, 95% CI = 1.01-1.28, P = 3.25 × 10-2). Among ever smokers, we found SNPs in CTSH (rs34577742 C > T, OR = 0.89, 95% CI = 0.85-0.92, P = 1.94 × 10-7) and SFTA2 (rs3095152 G > A, OR = 1.20, 95% CI = 1.14-1.27, P = 4.25 × 10-11) associated with overall lung cancer in the discovery data and validated in the replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.79-0.97, P = 1.64 × 10-2) and SFTA2 (rs3095152 G > A, OR = 1.15, 95% CI = 1.01-1.30, P = 3.81 × 10-2). Subsequent transcriptome-wide association study using expression weights from a lung expression quantitative trait loci study revealed genes most strongly associated with lung cancer are CTSH (PTWAS = 2.44 × 10-4) and SFTA2 (PTWAS = 2.32 × 10-6).
Assuntos
Neoplasias Pulmonares , Surfactantes Pulmonares , Humanos , Estudo de Associação Genômica Ampla , Pulmão/metabolismo , Genótipo , Surfactantes Pulmonares/metabolismo , Tensoativos/metabolismo , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Catepsina H/genética , Catepsina H/metabolismoRESUMO
BACKGROUND: Inflammatory and metabolic biomarkers have been associated with hepatocellular cancer (HCC) risk in phases I and II biomarker studies. We developed and internally validated a robust metabolic biomarker panel predictive of HCC in a longitudinal phase III study. METHODS: We used data and banked serum from a prospective cohort of 2266 adult patients with cirrhosis who were followed until the development of HCC (n=126). We custom designed a FirePlex immunoassay to measure baseline serum levels of 39 biomarkers and established a set of biomarkers with the highest discriminatory ability for HCC. We performed bootstrapping to evaluate the predictive performance using C-index and time-dependent area under the receiver operating characteristic curve (AUROC). We quantified the incremental predictive value of the biomarker panel when added to previously validated clinical models. RESULTS: We identified a nine-biomarker panel (P9) with a C-index of 0.67 (95% CI 0.66 to 0.67), including insulin growth factor-1, interleukin-10, transforming growth factor ß1, adipsin, fetuin-A, interleukin-1 ß, macrophage stimulating protein α chain, serum amyloid A and TNF-α. Adding P9 to our clinical model with 10 factors including AFP improved AUROC at 1 and 2 years by 4.8% and 2.7%, respectively. Adding P9 to aMAP score improved AUROC at 1 and 2 years by 14.2% and 7.6%, respectively. Adding AFP L-3 or DCP did not change the predictive ability of the P9 model. CONCLUSIONS: We identified a panel of nine serum biomarkers that is independently associated with developing HCC in cirrhosis and that improved the predictive ability of risk stratification models containing clinical factors.
RESUMO
The spatial arrangement of immune cells within the tumor microenvironment (TME) and their interactions play critical roles in the initiation and development of cancer. Several advanced technologies such as imaging mass cytometry (IMC) providing the immunological landscape of the TME with single-cell resolution. In this study, we develop a new method to quantify the spatial proximity between different cell types based on single-cell spatial data. Using this method on IMC data from 416 lung adenocarcinoma patients, we show that the proximity between different cell types is more correlated with patient prognosis compared to the traditional features such immune cell density and fractions. Consistent with previous reports, our results validate that proximity of T helper (Th) and B cells to cancer cells is associated with survival benefits. More importantly, we discover that the proximity of M2 macrophages to multiple immune cells is associated with poor prognosis. When Th/B cells are stratified into M2-distal and M2-proximal, the abundance of the former but not the latter category of Th/B cells is correlated with enhanced patient survival. Additionally, the abundance of M2-distal and M2-proximal cytotoxic T cells (Tc) is respectively associated with good and poor prognosis. Our results indicate that the prognostic effect of Th, Tc, and B cells in the tumor microenvironment is modulated by the nearby M2 macrophages. The proposed new method proposed can be readily applied to all single-cell spatial data for revealing functional impact of immune cell interactions.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Linfócitos do Interstício Tumoral , Macrófagos , Microambiente Tumoral , Humanos , Prognóstico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/mortalidade , Microambiente Tumoral/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/metabolismo , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos B/metabolismo , Análise de Célula Única/métodosRESUMO
During January-August 2021, the Community Prevalence of SARS-CoV-2 Study used time/location sampling to recruit a cross-sectional, population-based cohort to estimate SARS-CoV-2 seroprevalence and nasal swab sample PCR positivity across 15 US communities. Survey-weighted estimates of SARS-CoV-2 infection and vaccine willingness among participants at each site were compared within demographic groups by using linear regression models with inverse variance weighting. Among 22,284 persons >2 months of age and older, median prevalence of infection (prior, active, or both) was 12.9% across sites and similar across age groups. Within each site, average prevalence of infection was 3 percentage points higher for Black than White persons and average vaccine willingness was 10 percentage points lower for Black than White persons and 7 percentage points lower for Black persons than for persons in other racial groups. The higher prevalence of SARS-CoV-2 infection among groups with lower vaccine willingness highlights the disparate effect of COVID-19 and its complications.
Assuntos
COVID-19 , Vacinas , Adulto , Criança , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Transversais , Prevalência , Estudos SoroepidemiológicosRESUMO
Fourteen years after the first genome-wide association study (GWAS) of lung cancer was published, approximately 45 genomic loci have now been significantly associated with lung cancer risk. While functional characterization was performed for several of these loci, a comprehensive summary of the current molecular understanding of lung cancer risk has been lacking. Further, many novel computational and experimental tools now became available to accelerate the functional assessment of disease-associated variants, moving beyond locus-by-locus approaches. In this review, we first highlight the heterogeneity of lung cancer GWAS findings across histological subtypes, ancestries and smoking status, which poses unique challenges to follow-up studies. We then summarize the published lung cancer post-GWAS studies for each risk-associated locus to assess the current understanding of biological mechanisms beyond the initial statistical association. We further summarize strategies for GWAS functional follow-up studies considering cutting-edge functional genomics tools and providing a catalog of available resources relevant to lung cancer. Overall, we aim to highlight the importance of integrating computational and experimental approaches to draw biological insights from the lung cancer GWAS results beyond association.
Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Genômica/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Pulmão/patologia , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND: Recent therapeutic advances and screening technologies have improved survival among patients with lung cancer, who are now at high risk of developing second primary lung cancer (SPLC). Recently, an SPLC risk-prediction model (called SPLC-RAT) was developed and validated using data from population-based epidemiological cohorts and clinical trials, but real-world validation has been lacking. The predictive performance of SPLC-RAT was evaluated in a hospital-based cohort of lung cancer survivors. METHODS: The authors analyzed data from 8448 ever-smoking patients diagnosed with initial primary lung cancer (IPLC) in 1997-2006 at Mayo Clinic, with each patient followed for SPLC through 2018. The predictive performance of SPLC-RAT and further explored the potential of improving SPLC detection through risk model-based surveillance using SPLC-RAT versus existing clinical surveillance guidelines. RESULTS: Of 8448 IPLC patients, 483 (5.7%) developed SPLC over 26,470 person-years. The application of SPLC-RAT showed high discrimination area under the receiver operating characteristics curve: 0.81). When the cohort was stratified by a 10-year risk threshold of ≥5.6% (i.e., 80th percentile from the SPLC-RAT development cohort), the observed SPLC incidence was significantly elevated in the high-risk versus low-risk subgroup (13.1% vs. 1.1%, p < 1 × 10-6 ). The risk-based surveillance through SPLC-RAT (≥5.6% threshold) outperformed the National Comprehensive Cancer Network guidelines with higher sensitivity (86.4% vs. 79.4%) and specificity (38.9% vs. 30.4%) and required 20% fewer computed tomography follow-ups needed to detect one SPLC (162 vs. 202). CONCLUSION: In a large, hospital-based cohort, the authors validated the predictive performance of SPLC-RAT in identifying high-risk survivors of SPLC and showed its potential to improve SPLC detection through risk-based surveillance. PLAIN LANGUAGE SUMMARY: Lung cancer survivors have a high risk of developing second primary lung cancer (SPLC). However, no evidence-based guidelines for SPLC surveillance are available for lung cancer survivors. Recently, an SPLC risk-prediction model was developed and validated using data from population-based epidemiological cohorts and clinical trials, but real-world validation has been lacking. Using a large, real-world cohort of lung cancer survivors, we showed the high predictive accuracy and risk-stratification ability of the SPLC risk-prediction model. Furthermore, we demonstrated the potential to enhance efficiency in detecting SPLC using risk model-based surveillance strategies compared to the existing consensus-based clinical guidelines, including the National Comprehensive Cancer Network.
Assuntos
Sobreviventes de Câncer , Neoplasias Pulmonares , Segunda Neoplasia Primária , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/terapia , Risco , Fumar , PulmãoRESUMO
BACKGROUND: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated. METHODS: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways. RESULTS: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10-6 ) were originally identified. Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10-3 ), including four novel CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in regulatory pathways of NSCLC risk were identified. CONCLUSIONS: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby. PLAIN LANGUAGE SUMMARY: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non-small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Metilação de DNA , Neoplasias Pulmonares/genética , Estudo de Associação Genômica Ampla , Epigênese Genética , Biomarcadores , Ilhas de CpGRESUMO
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease characterized by a subset of patients who exhibit treatment resistance and poor prognoses. Genomic assays have been widely employed to identify high-risk individuals characterized by rearrangements in the MYC, BCL2 and BCL6 genes. These patients typically undergo more aggressive therapeutic treatments; however, there remains a significant variation in their treatment outcomes. This study introduces an MYC signature score (MYCSS) derived from gene expression profiles, specifically designed to evaluate MYC overactivation in DLBCL patients. MYCSS was validated across several independent cohorts to assess its ability to stratify patients based on MYC-related genetic and molecular aberrations, enhancing the accuracy of prognostic evaluations compared to conventional MYC biomarkers. Our results indicate that MYCSS significantly refines prognostic accuracy beyond that of conventional MYC biomarkers focused on genetic aberrations. More importantly, we found that nearly 50% of patients identified as high risk by traditional MYC metrics actually share similar survival prospects with those having no MYC aberrations. These patients may benefit from standard GCB-based therapies rather than more aggressive treatments. MYCSS provides a robust signature that identifies high-risk patients, aiding in the precision treatment of DLBCL, and minimizing the potential for overtreatment.
RESUMO
BACKGROUND & AIMS: In patients with cirrhosis, continued heavy alcohol consumption and obesity may increase risk of hepatocellular carcinoma (HCC). We examined whether germline susceptibility to hepatic steatosis not only independently predisposes to HCC but may also act synergistically with other risk factors. METHODS: We analyzed data from 1911 patients in 2 multicenter prospective cohort studies in the United States. We classified patients according to alcohol consumption (current heavy vs not current heavy), obesity (body mass index ≥30 vs <30 kg/m2), and PNPLA3 I148M variant status (carrier of at least one G risk allele vs noncarrier). We examined the independent and joint effects of these risk factors on risk of developing HCC using Cox regression with competing risks. RESULTS: Mean age was 59.6 years, 64.3% were male, 28.7% were Hispanic, 18.3% were non-Hispanic Black, 50.9% were obese, 6.2% had current heavy alcohol consumption, and 58.4% harbored at least 1 PNPLA3 G-allele. One hundred sixteen patients developed HCC. Compared with PNPLA3 noncarriers without heavy alcohol consumption, HCC risk was 2.65-fold higher (hazard ratio [HR], 2.65; 95% confidence interval [CI], 1.20-5.86) for carriers who had current heavy alcohol consumption. Compared with noncarrier patients without obesity, HCC risk was higher (HR, 2.40; 95% CI, 1.33-4.31) for carrier patients who were obese. PNPLA3 and alcohol consumption effect was stronger among patients with viral etiology of cirrhosis (HR, 3.42; 95% CI, 1.31-8.90). PNPLA3 improved 1-year risk prediction for HCC when added to a clinical risk model. CONCLUSIONS: The PNPLA3 variant may help refine risk stratification for HCC in patients with cirrhosis with heavy alcohol consumption or obesity who may need specific preventive measures.
Assuntos
Carcinoma Hepatocelular , Lipase , Cirrose Hepática , Neoplasias Hepáticas , Proteínas de Membrana , Obesidade , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/epidemiologia , Feminino , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/epidemiologia , Lipase/genética , Proteínas de Membrana/genética , Obesidade/complicações , Obesidade/genética , Estudos Prospectivos , Cirrose Hepática/genética , Cirrose Hepática/complicações , Idoso , Estados Unidos/epidemiologia , Fatores de Risco , Consumo de Bebidas Alcoólicas/efeitos adversos , Medição de Risco/métodos , Predisposição Genética para Doença , Aciltransferases , Fosfolipases A2 Independentes de CálcioRESUMO
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional regulation in various cellular processes including cell proliferation and differentiation, but the APA heterogeneity among single cells remains largely unknown. Single-cell RNA sequencing (scRNA-seq) has been extensively used to define cell subpopulations at the transcription level. Yet, most scRNA-seq data have not been analyzed in an "APA-aware" manner. Here, we introduce dynamic analysis of APA from single-cell RNA-seq (scDaPars), a bioinformatics algorithm to accurately quantify APA events at both single-cell and single-gene resolution using either 3'-end (10x Chromium) or full-length (Smart-seq2) scRNA-seq data. Validations in both real and simulated data indicate that scDaPars can robustly recover missing APA events caused by the low amounts of mRNA sequenced in single cells. When applied to cancer and human endoderm differentiation data, scDaPars not only revealed cell-type-specific APA regulation but also identified cell subpopulations that are otherwise invisible to conventional gene expression analysis. Thus, scDaPars will enable us to understand cellular heterogeneity at the post-transcriptional APA level.
Assuntos
Poliadenilação , Análise de Célula Única , Regiões 3' não Traduzidas , Expressão Gênica , RNA-Seq , Análise de Sequência de RNARESUMO
BACKGROUND AND AIMS: Etiological risk factors for cirrhosis have changed in the last decade. It remains unclear to what extent these trends in cirrhosis risk factors have changed HCC risk. APPROACH AND RESULTS: We used data from two contemporary, prospective multiethnic cohorts of patients with cirrhosis: the Texas Hepatocellular Carcinoma Consortium Cohort and the Houston Veterans Administration Cirrhosis Surveillance Cohort. Patients with cirrhosis were enrolled from seven US centers and followed until HCC diagnosis, transplant, death, or June 30, 2021. We calculated the annual incidence rates for HCC and examined the effects of etiology, demographic, clinical, and lifestyle factors on the risk of HCC. We included 2733 patients with cirrhosis (mean age 60.1 years, 31.3% women). At enrollment, 19.0% had active HCV, 23.3% had cured HCV, 16.1% had alcoholic liver disease, and 30.1% had NAFLD. During 7406 person-years of follow-up, 135 patients developed HCC at an annual incidence rate of 1.82% (95% CI, 1.51-2.13). The annual HCC incidence rate was 1.71% in patients with cured HCV, 1.32% in patients with alcoholic liver disease, and 1.24% in patients with NAFLD cirrhosis. Compared to patients with NAFLD, the risk of progression to HCC was 2-fold higher in patients with cured HCV (HR, 2.04; 95% CI, 1.24-3.35). Current smoking (HR, 1.63; 95% CI, 1.01-2.63) and overweight/obesity (HR, 1.79; 95% CI, 1.08-2.95) were also associated with HCC risk. CONCLUSIONS: HCC incidence among patients with cirrhosis was lower than previously reported. HCC risk was variable across etiologies, with higher risk in patients with HCV cirrhosis and lower risk in those with NAFLD cirrhosis. Current smoking and overweight/obesity increased HCC risk across etiologies.
Assuntos
Carcinoma Hepatocelular , Hepatite C , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/complicações , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/complicações , Estudos Prospectivos , Sobrepeso/complicações , Sobrepeso/epidemiologia , Fatores de Risco , Cirrose Hepática/complicações , Cirrose Hepática/epidemiologia , Hepatopatias Alcoólicas/complicações , Obesidade/complicações , Incidência , Hepatite C/complicaçõesRESUMO
BACKGROUND: COVID-19 has placed a disproportionate burden on underserved racial and ethnic groups, community members working in essential industries, those living in areas of high population density, and those reliant on in-person services such as transportation. The goal of this study was to estimate the cross-sectional prevalence of SARS-CoV-2 (active SARS-CoV-2 or prior SARS-CoV-2 infection) in children and adults attending public venues in 15 sociodemographically diverse communities in the United States and to develop a statistical design that could be rigorously implemented amidst unpredictable stay-at-home COVID-19 guidelines. METHODS: We used time-location sampling with complex sampling involving stratification, clustering of units, and unequal probabilities of selection to recruit individuals from selected communities. We safely conducted informed consent, specimen collection, and face-to-face interviews outside of public venues immediately following recruitment. RESULTS: We developed an innovative sampling design that adapted to constraints such as closure of venues, changing infection hotspots, and uncertain policies. We updated both the sampling frame and the selection probabilities over time using information acquired from prior weeks. We created site-specific survey weights that adjusted sampling probabilities for nonresponse and calibrated to county-level margins on age and sex at birth. CONCLUSIONS: Although the study itself was specific to COVID-19, the strategies presented in this article could serve as a case study that can be adapted for performing population-level inferences in similar settings and could help inform rapid and effective responses to future global public health challenges.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Recém-Nascido , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , Estudos Transversais , Manejo de Espécimes , Inquéritos e QuestionáriosRESUMO
Venous thromboembolism (VTE) poses a significant risk to cancer patients receiving systemic therapy. The generalizability of pan-cancer models to lymphomas is limited. Currently, there are no reliable risk prediction models for thrombosis in patients with lymphoma. Our objective was to create a risk assessment model (RAM) specifically for lymphomas. We performed a retrospective cohort study to develop Fine and Gray sub-distribution hazard model for VTE and pulmonary embolism (PE)/ lower extremity deep vein thrombosis (LE-DVT) respectively in adult lymphoma patients from the Veterans Affairs national healthcare system (VA). External validations were performed at the Harris Health System (HHS) and the MD Anderson Cancer Center (MDACC). Time-dependent c-statistic and calibration curves were used to assess discrimination and fit. There were 10,313 (VA), 854 (HHS), and 1858 (MDACC) patients in the derivation and validation cohorts with diverse baseline. At 6 months, the VTE incidence was 5.8% (VA), 8.2% (HHS), and 8.8% (MDACC), respectively. The corresponding estimates for PE/LE-DVT were 3.9% (VA), 4.5% (HHS), and 3.7% (MDACC), respectively. The variables in the final RAM included lymphoma histology, body mass index, therapy type, recent hospitalization, history of VTE, history of paralysis/immobilization, and time to treatment initiation. The RAM had c-statistics of 0.68 in the derivation and 0.69 and 0.72 in the two external validation cohorts. The two models achieved a clear differentiation in risk stratification in each cohort. Our findings suggest that easy-to-implement, clinical-based model could be used to predict personalized VTE risk for lymphoma patients.
Assuntos
Linfoma , Tromboembolia Venosa , Humanos , Estudos Retrospectivos , Linfoma/complicações , Linfoma/epidemiologia , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Medição de Risco , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/epidemiologia , Adulto , Embolia Pulmonar/etiologia , Embolia Pulmonar/epidemiologia , Trombose Venosa/etiologia , Trombose Venosa/epidemiologia , Fatores de Risco , Incidência , Idoso de 80 Anos ou maisRESUMO
Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta<5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta<5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes rel to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites.