Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 170(6): 1224-1233.e15, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28844692

RESUMO

CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/antagonistas & inibidores , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Evolução Molecular , Células HEK293 , Humanos , Domínios Proteicos , Alinhamento de Sequência
2.
Cell ; 167(7): 1829-1838.e9, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984730

RESUMO

CRISPR-Cas9 technology would be enhanced by the ability to inhibit Cas9 function spatially, temporally, or conditionally. Previously, we discovered small proteins encoded by bacteriophages that inhibit the CRISPR-Cas systems of their host bacteria. These "anti-CRISPRs" were specific to type I CRISPR-Cas systems that do not employ the Cas9 protein. We posited that nature would also yield Cas9 inhibitors in response to the evolutionary arms race between bacteriophages and their hosts. Here, we report the discovery of three distinct families of anti-CRISPRs that specifically inhibit the CRISPR-Cas9 system of Neisseria meningitidis. We show that these proteins bind directly to N. meningitidis Cas9 (NmeCas9) and can be used as potent inhibitors of genome editing by this system in human cells. These anti-CRISPR proteins now enable "off-switches" for CRISPR-Cas9 activity and provide a genetically encodable means to inhibit CRISPR-Cas9 genome editing in eukaryotes. VIDEO ABSTRACT.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Humanos
3.
Mol Cell ; 76(6): 938-952.e5, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31668930

RESUMO

High-resolution Cas9 structures have yet to reveal catalytic conformations due to HNH nuclease domain positioning away from the cleavage site. Nme1Cas9 and Nme2Cas9 are compact nucleases for in vivo genome editing. Here, we report structures of meningococcal Cas9 homologs in complex with sgRNA, dsDNA, or the AcrIIC3 anti-CRISPR protein. DNA-bound structures represent an early step of target recognition, a later HNH pre-catalytic state, the HNH catalytic state, and a cleaved-target-DNA-bound state. In the HNH catalytic state of Nme1Cas9, the active site is seen poised at the scissile phosphodiester linkage of the target strand, providing a high-resolution view of the active conformation. The HNH active conformation activates the RuvC domain. Our structures explain how Nme1Cas9 and Nme2Cas9 read distinct PAM sequences and how AcrIIC3 inhibits Nme1Cas9 activity. These structures provide insights into Cas9 domain rearrangements, guide-target engagement, cleavage mechanism, and anti-CRISPR inhibition, facilitating the optimization of these genome-editing platforms.


Assuntos
Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/metabolismo , Neisseria meningitidis/enzimologia , Proteínas Virais/metabolismo , Bacteriófagos/genética , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/ultraestrutura , Catálise , DNA/genética , DNA/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Neisseria meningitidis/genética , Ligação Proteica , Domínios Proteicos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
4.
Nucleic Acids Res ; 52(2): 977-997, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38033325

RESUMO

Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.


Assuntos
Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Animais , Camundongos , Distribuição Tecidual , RNA/genética , Oligonucleotídeos
5.
Biochemistry ; 58(14): 1905-1917, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30916546

RESUMO

CRISPR-Cas systems are RNA-guided nucleases that provide adaptive immune protection for bacteria and archaea against intruding genomic materials. The programmable nature of CRISPR-targeting mechanisms has enabled their adaptation as powerful genome engineering tools. Cas9, a type II CRISPR effector protein, has been widely used for gene-editing applications owing to the fact that a single-guide RNA can direct Cas9 to cleave desired genomic targets. An understanding of the role of different domains of the protein and guide RNA-induced conformational changes of Cas9 in selecting target DNA has been and continues to enable development of Cas9 variants with reduced off-targeting effects. It has been previously established that an arginine-rich bridge helix (BH) present in Cas9 is critical for its activity. In the present study, we show that two proline substitutions within a loop region of the BH of Streptococcus pyogenes Cas9 impair the DNA cleavage activity by accumulating nicked products and reducing target DNA linearization. This in turn imparts a higher selectivity in DNA targeting. We discuss the probable mechanisms by which the BH-loop contributes to target DNA recognition.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes/métodos , Prolina/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , DNA/química , DNA/genética , DNA/metabolismo , Clivagem do DNA , Modelos Moleculares , Mutação de Sentido Incorreto , Conformação de Ácido Nucleico , Prolina/química , Prolina/genética , Estrutura Secundária de Proteína , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética
6.
RNA ; 19(8): 1105-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23801788

RESUMO

The central nonsense-mediated mRNA decay (NMD) regulator, Upf1, selectively targets nonsense-containing mRNAs for rapid degradation. In yeast, Upf1 preferentially associates with mRNAs that are NMD substrates, but the mechanism of its selective retention on these mRNAs has yet to be elucidated. Previously, we demonstrated that Upf1 associates with 40S ribosomal subunits. Here, we define more precisely the nature of this association using conventional and affinity-based purification of ribosomal subunits, and a two-hybrid screen to identify Upf1-interacting ribosomal proteins. Upf1 coimmunoprecipitates specifically with epitope-tagged 40S ribosomal subunits, and Upf1 association with high-salt washed or puromycin-released 40S subunits was found to occur without simultaneous eRF1, eRF3, Upf2, or Upf3 association. Two-hybrid analyses and in vitro binding assays identified a specific interaction between Upf1 and Rps26. Using mutations in domains of UPF1 known to be crucial for its function, we found that Upf1:40S association is modulated by ATP, and Upf1:Rps26 interaction is dependent on the N-terminal Upf1 CH domain. The specific association of Upf1 with the 40S subunit is consistent with the notion that this RNA helicase not only triggers rapid decay of nonsense-containing mRNAs, but may also have an important role in dissociation of the premature termination complex.


Assuntos
RNA Helicases/química , RNA Helicases/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Códon sem Sentido , Modelos Moleculares , Mutagênese Sítio-Dirigida , Degradação do RNAm Mediada por Códon sem Sentido , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , RNA Helicases/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Nature ; 453(7199): 1276-80, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18496529

RESUMO

Efficient translation initiation and optimal stability of most eukaryotic messenger RNAs depends on the formation of a closed-loop structure and the resulting synergistic interplay between the 5' m(7)G cap and the 3' poly(A) tail. Evidence of eIF4G and Pab1 interaction supports the notion of a closed-loop mRNP, but the mechanistic events that lead to its formation and maintenance are still unknown. Here we use toeprinting and polysome profiling assays to delineate ribosome positioning at initiator AUG codons and ribosome-mRNA association, respectively, and find that two distinct stable (resistant to cap analogue) closed-loop structures are formed during initiation in yeast cell-free extracts. The integrity of both forms requires the mRNA cap and poly(A) tail, as well as eIF4E, eIF4G, Pab1 and eIF3, and is dependent on the length of both the mRNA and the poly(A) tail. Formation of the first structure requires the 48S ribosomal complex, whereas the second requires an 80S ribosome and the termination factors eRF3/Sup35 and eRF1/Sup45. The involvement of the termination factors is independent of a termination event.


Assuntos
Biossíntese de Proteínas , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Animais , Sequência de Bases , Códon de Iniciação/genética , Cicloeximida/farmacologia , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Polirribossomos/genética , Polirribossomos/metabolismo , Príons/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Res Sq ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945419

RESUMO

CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN PAM preference, with the N-terminus of Sc++, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse NNN PAMs and disease-related loci for potential therapeutic applications. In total, the unique approaches to generate SpRYc, coupled with its robust flexibility, highlight the power of integrative protein design for Cas9 engineering and motivate downstream editing applications that require precise genomic positioning.

9.
Nat Commun ; 14(1): 6175, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794046

RESUMO

CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN (R = A or G, Y = C or T) PAM preference, with the N-terminus of Sc + +, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse PAMs and disease-related loci for potential therapeutic applications. In total, the approaches to generate SpRYc, coupled with its robust flexibility, highlight the power of integrative protein design for Cas9 engineering and motivate downstream editing applications that require precise genomic positioning.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Genoma
10.
RNA ; 16(9): 1832-47, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20675403

RESUMO

In addition to their well-documented roles in the promotion of nonsense-mediated mRNA decay (NMD), yeast Upf proteins (Upf1, Upf2/Nmd2, and Upf3) also manifest translational regulatory functions, at least in vitro, including roles in premature translation termination and subsequent reinitiation. Here, we find that all upf Delta strains also fail to reinitiate translation after encountering a premature termination codon (PTC) in vivo, a result that led us to seek a unifying mechanism for all of these translation phenomena. Comparisons of the in vitro translational activities of wild-type (WT) and upf1 Delta extracts were utilized to test for a Upf1 role in post-termination ribosome reutilization. Relative to WT extracts, non-nucleased extracts lacking Upf1 had approximately twofold decreased activity for the translation of synthetic CAN1/LUC mRNA, a defect paralleled by fewer ribosomes per mRNA and reduced efficiency of the 60S joining step at initiation. These deficiencies could be complemented by purified FLAG-Upf1, or 60S subunits, and appeared to reflect diminished cycling of ribosomes from endogenous PTC-containing mRNAs to exogenously added synthetic mRNA in the same extracts. This hypothesis was tested, and supported, by experiments in which nucleased WT or upf1 Delta extracts were first challenged with high concentrations of synthetic mRNAs that were templates for either normal or premature translation termination and then assayed for their capacity to translate a normal mRNA. Our results indicate that Upf1 plays a key role in a mechanism coupling termination and ribosome release at a PTC to subsequent ribosome reutilization for another round of translation initiation.


Assuntos
Códon sem Sentido , Biossíntese de Proteínas , RNA Helicases/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo
11.
Prog Mol Biol Transl Sci ; 181: 31-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34127199

RESUMO

The clustered, regularly interspersed, short palindromic repeats (CRISPR) technology is revolutionizing biological studies and holds tremendous promise for treating human diseases. However, a significant limitation of this technology is that modifications can occur on off-target sites lacking perfect complementarity to the single guide RNA (sgRNA) or canonical protospacer-adjacent motif (PAM) sequence. Several in vivo and in vitro genome-wide off-target profiling approaches have been developed to inform on the fidelity of gene editing. Of these, GUIDE-seq has become one of the most widely adopted and reproducible methods. To allow users to easily analyze GUIDE-seq data generated on any sequencing platform, we developed an open-source pipeline, GS-Preprocess, that takes standard base-call output in bcl format and generate all required input data for off-target identification using bioconductor package GUIDEseq for off-target identification. Furthermore, we created a Docker image with GS-Proprocess, GUIDE-seq, and all its R and system dependencies already installed. The bundled pipeline will empower end users to streamline the analysis of GUIDE-seq data and motivate their use of higher throughput sequencing with increased multiplexing for GUIDE-seq experiments.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , Edição de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
12.
Nat Commun ; 12(1): 6931, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836963

RESUMO

Obesity and type 2 diabetes are associated with disturbances in insulin-regulated glucose and lipid fluxes and severe comorbidities including cardiovascular disease and steatohepatitis. Whole body metabolism is regulated by lipid-storing white adipocytes as well as "brown" and "brite/beige" adipocytes that express thermogenic uncoupling protein 1 (UCP1) and secrete factors favorable to metabolic health. Implantation of brown fat into obese mice improves glucose tolerance, but translation to humans has been stymied by low abundance of primary human beige adipocytes. Here we apply methods to greatly expand human adipocyte progenitors from small samples of human subcutaneous adipose tissue and then disrupt the thermogenic suppressor gene NRIP1 by CRISPR. Ribonucleoprotein consisting of Cas9 and sgRNA delivered ex vivo are fully degraded by the human cells following high efficiency NRIP1 depletion without detectable off-target editing. Implantation of such CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreases adiposity and liver triglycerides while enhancing glucose tolerance compared to implantation with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic enhancement of human adipocytes without exposing the recipient to immunogenic Cas9 or delivery vectors.


Assuntos
Adipócitos Marrons/transplante , Sistemas CRISPR-Cas/genética , Intolerância à Glucose/terapia , Obesidade/terapia , Termogênese/genética , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Células-Tronco Adultas/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Edição de Genes/métodos , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Proteína 1 de Interação com Receptor Nuclear/genética , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Obesidade/complicações , Obesidade/metabolismo , RNA Guia de Cinetoplastídeos/genética , Gordura Subcutânea/citologia
13.
Nature ; 432(7013): 112-8, 2004 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-15525991

RESUMO

Nonsense-mediated messenger RNA decay (NMD) is triggered by premature translation termination, but the features distinguishing premature from normal termination are unknown. One model for NMD suggests that decay-inducing factors bound to mRNAs during early processing events are routinely removed by elongating ribosomes but remain associated with mRNAs when termination is premature, triggering rapid turnover. Recent experiments challenge this notion and suggest a model that posits that mRNA decay is activated by the intrinsically aberrant nature of premature termination. Here we use a primer extension inhibition (toeprinting) assay to delineate ribosome positioning and find that premature translation termination in yeast extracts is indeed aberrant. Ribosomes encountering premature UAA or UGA codons in the CAN1 mRNA fail to release and, instead, migrate to upstream AUGs. This anomaly depends on prior nonsense codon recognition and is eliminated in extracts derived from cells lacking the principal NMD factor, Upf1p, or by flanking the nonsense codon with a normal 3'-untranslated region (UTR). Tethered poly(A)-binding protein (Pab1p), used as a mimic of a normal 3'-UTR, recruits the termination factor Sup35p (eRF3) and stabilizes nonsense-containing mRNAs. These findings indicate that efficient termination and mRNA stability are dependent on a properly configured 3'-UTR.


Assuntos
Regiões 3' não Traduzidas/metabolismo , Códon sem Sentido/genética , Terminação Traducional da Cadeia Peptídica/genética , Estabilidade de RNA , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Sítios de Ligação , Extratos Celulares , Cicloeximida/farmacologia , RNA Fúngico/genética , RNA Fúngico/metabolismo
14.
Nat Biotechnol ; 38(10): 1154-1158, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32393822

RESUMO

CRISPR enzymes require a protospacer-adjacent motif (PAM) near the target cleavage site, constraining the sequences accessible for editing. In the present study, we combine protein motifs from several orthologs to engineer two variants of Streptococcus canis Cas9-Sc++ and a higher-fidelity mutant HiFi-Sc++-that have simultaneously broad 5'-NNG-3' PAM compatibility, robust DNA-cleavage activity and minimal off-target activity. Sc++ and HiFi-Sc++ extend the use of CRISPR editing for diverse applications.


Assuntos
Motivos de Aminoácidos/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Clivagem do DNA , Edição de Genes/métodos , Streptococcus/genética
15.
Nat Biotechnol ; 38(10): 1212, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32561876

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Vet Rec Open ; 6(1): e000324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565228

RESUMO

The present study is the first to investigate Border disease caused by the sheep pestivirus (SPV) in sheep herds in Morocco. Sero-epidemiological investigations were carried out in six regions of the Kingdom, known as important in terms of sheep breeding. A total of 760 blood samples were collected including aborted ewes from 28 randomly selected farms. The samples were analysed, for the determination of anti-pestivirus antibodies, using indirect ELISA technique. Next, reverse transcriptase PCR (RT-PCR) was conducted on serologically negative samples to identify possible persistently infected (PI) animals, through detection of specific RNA fragment. The results revealed an overall SPV seroprevalence in studied areas of 28.9%. The difference in seroprevalence between the six investigated regions was not statistically significant (p>0.05) and varied slightly from 20.9% to 37.5%. Furthermore, 93% of investigated farms were affected with an average seroprevalence of 22.7% (with a variation of 1%-74%). RT-PCR results were all negative, indicating the absence of PI animals in the tested samples. Nevertheless, the present study revealed that SPV is endemic in Morocco.

17.
Genome Biol ; 19(1): 137, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231914

RESUMO

BACKGROUND: Clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) have recently opened a new avenue for gene therapy. Cas9 nuclease guided by a single-guide RNA (sgRNA) has been extensively used for genome editing. Currently, three Cas9 orthologs have been adapted for in vivo genome engineering applications: Streptococcus pyogenes Cas9 (SpyCas9), Staphylococcus aureus Cas9 (SauCas9), and Campylobacter jejuni (CjeCas9). However, additional in vivo editing platforms are needed, in part to enable a greater range of sequences to be accessed via viral vectors, especially those in which Cas9 and sgRNA are combined into a single vector genome. RESULTS: Here, we present in vivo editing using Neisseria meningitidis Cas9 (NmeCas9). NmeCas9 is compact, edits with high accuracy, and possesses a distinct protospacer adjacent motif (PAM), making it an excellent candidate for safe gene therapy applications. We find that NmeCas9 can be used to target the Pcsk9 and Hpd genes in mice. Using tail-vein hydrodynamic-based delivery of NmeCas9 plasmid to target the Hpd gene, we successfully reprogram the tyrosine degradation pathway in Hereditary Tyrosinemia Type I mice. More importantly, we deliver NmeCas9 with its sgRNA in a single recombinant adeno-associated vector (rAAV) to target Pcsk9, resulting in lower cholesterol levels in mice. This all-in-one vector yielded > 35% gene modification after two weeks of vector administration, with minimal off-target cleavage in vivo. CONCLUSIONS: Our findings indicate that NmeCas9 can enable the editing of disease-causing loci in vivo, expanding the targeting scope of RNA-guided nucleases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Dependovirus/genética , Edição de Genes , 4-Hidroxifenilpiruvato Dioxigenase/genética , Animais , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Vetores Genéticos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Neisseria meningitidis/enzimologia , Oxirredutases/genética , Plasmídeos/administração & dosagem , Pró-Proteína Convertase 9/genética , Tirosinemias/terapia
18.
Nat Commun ; 9(1): 5294, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531933

RESUMO

The original version of this Article contained errors in the author affiliations. Mehmet Fatih Bolukbasi was incorrectly associated with Bluebird Bio., Cambridge, MA, USA and Ankit Gupta was incorrectly associated with Exonics Therapeutics, Watertown, MA, USA. This has now been corrected in the HTML version of the Article. The PDF version of the Article was correct at the time of publication.

19.
Nat Commun ; 9(1): 4856, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451839

RESUMO

The development of robust, versatile and accurate toolsets is critical to facilitate therapeutic genome editing applications. Here we establish RNA-programmable Cas9-Cas9 chimeras, in single- and dual-nuclease formats, as versatile genome engineering systems. In both of these formats, Cas9-Cas9 fusions display an expanded targeting repertoire and achieve highly specific genome editing. Dual-nuclease Cas9-Cas9 chimeras have distinct advantages over monomeric Cas9s including higher target site activity and the generation of predictable precise deletion products between their target sites. At a therapeutically relevant site within the BCL11A erythroid enhancer, Cas9-Cas9 nucleases produced precise deletions that comprised up to 97% of all sequence alterations. Thus Cas9-Cas9 chimeras represent an important tool that could be particularly valuable for therapeutic genome editing applications where a precise cleavage position and defined sequence end products are desirable.


Assuntos
Proteínas de Bactérias/genética , Sequência de Bases , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes/métodos , Proteínas Mutantes Quiméricas/genética , Deleção de Sequência , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Endonucleases/metabolismo , Engenharia Genética , Genoma Humano , Células HEK293 , Humanos , Células Jurkat , Células K562 , Proteínas Mutantes Quiméricas/metabolismo , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
20.
mBio ; 9(6)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514786

RESUMO

In their natural settings, CRISPR-Cas systems play crucial roles in bacterial and archaeal adaptive immunity to protect against phages and other mobile genetic elements, and they are also widely used as genome engineering technologies. Previously we discovered bacteriophage-encoded Cas9-specific anti-CRISPR (Acr) proteins that serve as countermeasures against host bacterial immunity by inactivating their CRISPR-Cas systems (A. Pawluk, N. Amrani, Y. Zhang, B. Garcia, et al., Cell 167:1829-1838.e9, 2016, https://doi.org/10.1016/j.cell.2016.11.017). We hypothesized that the evolutionary advantages conferred by anti-CRISPRs would drive the widespread occurrence of these proteins in nature (K. L. Maxwell, Mol Cell 68:8-14, 2017, https://doi.org/10.1016/j.molcel.2017.09.002; A. Pawluk, A. R. Davidson, and K. L. Maxwell, Nat Rev Microbiol 16:12-17, 2018, https://doi.org/10.1038/nrmicro.2017.120; E. J. Sontheimer and A. R. Davidson, Curr Opin Microbiol 37:120-127, 2017, https://doi.org/10.1016/j.mib.2017.06.003). We have identified new anti-CRISPRs using the same bioinformatic approach that successfully identified previous Acr proteins (A. Pawluk, N. Amrani, Y. Zhang, B. Garcia, et al., Cell 167:1829-1838.e9, 2016, https://doi.org/10.1016/j.cell.2016.11.017) against Neisseria meningitidis Cas9 (NmeCas9). In this work, we report two novel anti-CRISPR families in strains of Haemophilus parainfluenzae and Simonsiella muelleri, both of which harbor type II-C CRISPR-Cas systems (A. Mir, A. Edraki, J. Lee, and E. J. Sontheimer, ACS Chem Biol 13:357-365, 2018, https://doi.org/10.1021/acschembio.7b00855). We characterize the type II-C Cas9 orthologs from H. parainfluenzae and S. muelleri, show that the newly identified Acrs are able to inhibit these systems, and define important features of their inhibitory mechanisms. The S. muelleri Acr is the most potent NmeCas9 inhibitor identified to date. Although inhibition of NmeCas9 by anti-CRISPRs from H. parainfluenzae and S. muelleri reveals cross-species inhibitory activity, more distantly related type II-C Cas9s are not inhibited by these proteins. The specificities of anti-CRISPRs and divergent Cas9s appear to reflect coevolution of their strategies to combat or evade each other. Finally, we validate these new anti-CRISPR proteins as potent off-switches for Cas9 genome engineering applications.IMPORTANCE As one of their countermeasures against CRISPR-Cas immunity, bacteriophages have evolved natural inhibitors known as anti-CRISPR (Acr) proteins. Despite the existence of such examples for type II CRISPR-Cas systems, we currently know relatively little about the breadth of Cas9 inhibitors, and most of their direct Cas9 targets are uncharacterized. In this work we identify two new type II-C anti-CRISPRs and their cognate Cas9 orthologs, validate their functionality in vitro and in bacteria, define their inhibitory spectrum against a panel of Cas9 orthologs, demonstrate that they act before Cas9 DNA binding, and document their utility as off-switches for Cas9-based tools in mammalian applications. The discovery of diverse anti-CRISPRs, the mechanistic analysis of their cognate Cas9s, and the definition of Acr inhibitory mechanisms afford deeper insight into the interplay between Cas9 orthologs and their inhibitors and provide greater scope for exploiting Acrs for CRISPR-based genome engineering.


Assuntos
Bacteriófagos/química , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas , Proteínas Virais/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Células HEK293 , Haemophilus parainfluenzae/virologia , Humanos , Neisseriaceae/virologia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA