Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 522(1): 40-46, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31735336

RESUMO

Atopic dermatitis (AD) can occur in both children and adults, and the symptoms include itching and eczema, which in turn cause patients to suffer. Ophiopogonin D (OP-D) is a steroidal glycoside from Radix Ophiopogon japonicus, which is well known as an effective anti-inflammatory herbal medicine in many Asian countries. In this study, we aimed to investigate the anti-inflammatory effects of OP-D, using an AD mouse model and inflamed HaCaT cells. Through a histopathological analysis, we were able to confirm the suppressive effects of OP-D on skin thickening and the mast cell activation in AD-like mouse back skin tissues stimulated by DNCB. In addition, we detected significant decreases in cytokine expression levels through multiplex assessment assays of the OP-D-treated mice blood. We observed the anti-inflammatory effect of OP-D in the spleen, causing weight loss in the spleen and in the mRNA expression levels related to diverse cytokines. In human keratinocytes inflamed by TNF-α, OP-D inhibited p38 and ERK protein activation and showed a reduction of NF-κB nuclear translocation. Furthermore, OP-D attenuated pro-inflammatory cytokine mRNA expressions in TNF-α-inflamed HaCaT cells. Accordingly, we came to the conclusion that OP-D is a potential natural drug which can be used in order to treat inflammatory skin diseases, such as AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Queratinócitos/efeitos dos fármacos , Saponinas/farmacologia , Espirostanos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dinitroclorobenzeno/farmacologia , Feminino , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Pele/efeitos dos fármacos , Baço/efeitos dos fármacos
2.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422890

RESUMO

As a plant medicine, Oxalidaceae has been used to treat various diseases in Korea. However, there is little data on the anti-cancer efficacy of Oxalidaceae, particularly O. obtriangulata. This study aimed to investigate the anti-cancer effect of O. obtriangulata methanol extract (OOE) and its regulatory actions on pancreatic carcinoma. OOE showed anti-proliferative effects and induced cell death in the colony formation and cell viability assays, respectively. The Fluorescence-activated cell sorting (FACS) data confirmed that OOE significantly induced cell cycle accumulation at the G2/M phase and apoptotic effects. Additionally, OOE inhibited the activated ERK (extracellular-signal-regulated kinase)/Src (Proto-oncogene tyrosine-protein kinase Src)/STAT3 (signal transducers and activators of transcription 3) pathways including nuclear translocation of STAT3. Furthermore, suppression of Ki67, PARP(Poly ADP-ribose polymerase), caspase-3, P27(Cyclin-dependent kinase inhibitor 1B), and c-Myc as well as the STAT3 target genes CDK(cyclin-dependent kinase)1, CDK2, Cyclin B1, VEGF-1(vascular endothelial growth factor-1), MMP-9(Matrix metallopeptidase 9), and Survivin by OOE was observed in BxPC3. We speculate that these molecular actions might support an anti-cancer effect of OOE. In this study, we demonstrated that OOE may be a promising anti-cancer material and may serve as a natural therapy and alternative remedy for pancreatic cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Magnoliopsida/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B1/genética , Ciclina B1/metabolismo , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Extratos Vegetais/química , Plantas Medicinais , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Int J Mol Sci ; 20(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126070

RESUMO

A correlation between gastrointestinal (GI) inflammation and gut hormones has reported that inflammatory stimuli including bacterial endotoxins, lipopolysaccharides (LPS), TNFα, IL-1ß, and IL-6 induces high levels of incretin hormone leading to glucose dysregulation. Although incretin hormones are immediately secreted in response to environmental stimuli, such as nutrients, cytokines, and LPS, but studies of glucose-induced incretin secretion in an inflamed state are limited. We hypothesized that GI inflammatory conditions induce over-stimulated incretin secretion via an increase of glucose-sensing receptors. To confirm our hypothesis, we observed the alteration of glucose-induced incretin secretion and glucose-sensing receptors in a GI inflammatory mouse model, and we treated a conditioned media (Mϕ 30%) containing inflammatory cytokines in intestinal epithelium cells and enteroendocrine L-like NCI-H716 cells. In GI-inflamed mice, we observed that over-stimulated incretin secretion and insulin release in response to glucose and sodium glucose cotransporter (Sglt1) was increased. Incubation with Mϕ 30% increases Sglt1 and induces glucose-induced GLP-1 secretion with increasing intracellular calcium influx. Phloridzin, an sglt1 inhibitor, inhibits glucose-induced GLP-1 secretion, ERK activation, and calcium influx. These findings suggest that the abnormalities of incretin secretion leading to metabolic disturbances in GI inflammatory disease by an increase of Sglt1.


Assuntos
Gastroenterite/imunologia , Glucose/imunologia , Insulina/imunologia , Transportador 1 de Glucose-Sódio/imunologia , Animais , Linhagem Celular , Células Cultivadas , Feminino , Polipeptídeo Inibidor Gástrico/imunologia , Gastroenterite/patologia , Peptídeo 1 Semelhante ao Glucagon/imunologia , Incretinas/imunologia , Inflamação/imunologia , Inflamação/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL
4.
Int Immunopharmacol ; 129: 111569, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340419

RESUMO

The COVID-19 pandemic has underscored the pressing need for safe and effective booster vaccines, particularly in considering the emergence of new SARS-CoV-2 variants and addressing vaccine distribution inequalities. Dissolving microneedle array patches (MAP) offer a promising delivery method, enhancing immunogenicity and improving accessibility through the skin's immune potential. In this study, we evaluated a microneedle array patch-based S1 subunit protein COVID-19 vaccine candidate, which comprised a bivalent formulation targeting the Wuhan and Beta variant alongside a monovalent Delta variant spike proteins in a murine model. Notably, the second boost of homologous bivalent MAP-S1(WU + Beta) induced a 15.7-fold increase in IgG endpoint titer, while the third boost of heterologous MAP-S1RS09Delta yielded a more modest 1.6-fold increase. Importantly, this study demonstrated that the administration of four doses of the MAP vaccine induced robust and long-lasting immune responses, persisting for at least 80 weeks. These immune responses encompassed various IgG isotypes and remained statistically significant for one year. Furthermore, neutralizing antibodies against multiple SARS-CoV-2 variants were generated, with comparable responses observed against the Omicron variant. Overall, these findings emphasize the potential of MAP-based vaccines as a promising strategy to combat the evolving landscape of COVID-19 and to deliver a safe and effective booster vaccine worldwide.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Subunidades Proteicas , SARS-CoV-2 , Vacinas de Subunidades Proteicas , Pandemias , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
5.
Pharmaceutics ; 14(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35631531

RESUMO

Timosaponin A3 (TA3) was demonstrated as a potent anticancer chemical by several studies. Although the effects of inhibiting growth, metastasis, and angiogenesis in various cancer cells were demonstrated through multiple mechanisms, the pharmacological mechanism of TA3 shown in pancreatic cancer (PC) is insufficient compared to other cancers. In this study, we aimed to explore the key molecular mechanisms underlying the growth inhibitory effects of TA3 using PC cells and a xenograft model. First, from the microarray results, we found that TA3 regulated INSIG-1 and HMGCR in BxPC-3 cells. Furthermore, we showed that inhibition of sterol regulatory element-binding protein-1 (SREBP-1) by TA3 reduced the fatty acid synthases FASN and ACC, thereby controlling the growth of BxPC-3 cells. We also tried to find mechanisms involved with SREBP-1, such as Akt, Gsk3ß, mTOR, and AMPK, but these were not related to SREBP-1 inhibition by TA3. In the BxPC-3 xenograft model, the TA3 group had more reduced tumor formation and lower toxicity than the gemcitabine group. Interestingly, the level of the fatty acid metabolites palmitate and stearate were significantly reduced in the tumor tissue in the TA3 group. Overall, our study demonstrated that SREBP-1 was a key transcription factor involved in pancreatic cancer growth and it remained a precursor form due to TA3, reducing the adipogenesis and growth in BxPC-3 cells. Our results improve our understanding of novel mechanisms of TA3 for the regulation of lipogenesis and provide a new approach to the prevention and treatment of PC.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32963561

RESUMO

Particulate matter 10 (PM10) with a diameter of less than 10 mm causes inflammation and allergic reactions in the airways and lungs, which adversely affects asthmatic patients. In this study, we examined the anti-inflammatory effects of Rosa laevigata (RL), which has been previously investigated medicinally in Korea and China for the discovery of plant-derived anti-inflammatory agents with low side effects, using a PM10-induced lung inflammatory disease model. Using MTT assay, we confirmed that in A549 cells pretreated with RL, cytotoxicity induced by PM10 (100 µg/mL) exposure was attenuated. In addition, western blotting revealed that RL suppressed the expression level of MAPK/NF-κB pathways and its downstream signal, COX-2 in PM10-induced A549 cells. Moreover, real-time PCR demonstrated that RL downregulated the mRNA expression level of inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-13, and IL-17) in PM10-induced A549 cells. Based on the results of this study, RL has been shown to relieve inflammation in the lungs due to PM10 exposure. Therefore, RL may be developed as a natural remedy for respiratory diseases caused by PM10 exposure.

7.
Front Pharmacol ; 9: 1071, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298009

RESUMO

Taste receptors exist in several organs from tongue to colon and have diverse functions dependent on specific cell type. In enteroendocrine L-cells, stimulation of taste receptor signaling induces incretin hormones. Among incretin hormones, glucagon-like peptide-1 (GLP-1) induces insulinotropic action by activating GLP-1 receptor of pancreatic ß-cells. However, GLP-1 mimetic medicines have reported clinical side effects, such as autoimmune hepatitis, acute kidney injury, pancreatitis, and pancreatic cancer. Here, we hypothesized that if natural components in ethnomedicines can activate agonistic action of taste receptor; they may stimulate GLP-1 and therefore, could be developed as safe and applicable medicines to type 2 diabetes mellitus (T2DM) with minimal side effects. Cucurbitacin B (CuB) is composed of triterpenoid structure and its structural character, that represents bitterness, can stimulate AMP-activated protein kinase (AMPK) pathway. CuB ameliorated hyperglycemia by activating intestinal AMPK levels and by inducing plasma GLP-1 and insulin release in diabetic mice. This hypoglycemic action was decreased in dorsomorphin-injected mice and α-gustducin null mice. Moreover, systemic inhibition study in differentiated NCI-H716 cell line showed that CuB-mediated GLP-1 secretion was involved in activation of AMPK through α-gustducin and Gßγ-signaling of taste receptors. In summary, we conclude that, CuB represents novel hypoglycemic agents by activation of AMPK and stimulation of GLP-1 in differentiated enteroendocrine L-cells. These results suggest that taste receptor signaling-based therapeutic agents within tremendously diverse ethnomedicines, could be applied to developing therapeutics for T2DM patients.

8.
Tissue Eng Regen Med ; 14(1): 73-80, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603464

RESUMO

To evaluate whether Palmitoyl-pentapeptide (Pal-KTTKS), a lipidated subfragment of type 1 pro-collagen (residues 212-216), plays a role in fibroblast contractility, the effect of Pal-KTTKS on the expression of pro-fibrotic mediators in hypertropic scarring were investigated in relation with trans-differentiation of fibroblast to myofibroblast, an icon of scar formation. α-SMA was visualized by immunofluorescence confocal microscopy with a Cy-3-conjugated monoclonal antibody. The extent of α-SMA-positive fibroblasts was determined in collagen lattices and in cell culture study. Pal-KTTKS (0-0.5 µM) induced CTGF and α-SMA protein levels were determined by western blot analysis and fibroblast contractility was assessed in three-dimensional collagen lattice contraction assay. In confocal analysis, fibroblasts were observed as elongated and spindle shapes while myofibroblast observed as squamous, enlarged cells with pronounced stress fibers. Without Pal-KTTKS treatment, three quarters of the fibroblasts differentiates into the myofibroblast; α-SMA-positive stress fibers per field decreased twofold with 0.1 µM Pal-KTTKS treatment (75 ± 7.1 vs 38.6 ± 16.1%, n = 3, p < 0.05). The inhibitory effect was not significant in 0.5 µM Pal-KTTKS treatment. Stress fiber level and collagen contractility correlates with α-SMA expression level. In conclusion, Pal-KTTKS (0.1 µM) reduces α-SMA expression and trans-differentiation of fibroblasts to myofibroblast. The degree of reduction is dose-dependent. An abundance of myofibroblast and fibrotic scarring is correlated with excessive levels of α-SMA and collagen contractility. Delicate balance between the wound healing properties and pro-fibrotic abilities of pentapeptide KTTKS should be considered for selecting therapeutic dose for scar prevention.

9.
Tissue Eng Regen Med ; 13(4): 388-395, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30603420

RESUMO

The effects of C-phycocyanin (C-pc), a phycobiliprotein, on the expression of pro-fibrotic mediators in hyper-tropic scarring such as connective tissue growth factor (CTGF) and α-smooth muscle actins (α-SMA) were investigated in relation to trans-differentiation of fibroblast to myo-fibroblast, an icon of scar formation. C-pc was isolated from Spirulina Platensis extract using sonication method and C-pc concentration was determined by Bennet and Bogorad equation. α-SMA and CTGF levels in wounded primary human dermal fibroblasts were determined by western blot analysis and immuno-fluorescence confocal microscope was employed. Fibroblast contractility was examined by three-dimensional collagen lattice contraction assay. There was an elevation of α-SMA (121%) and CTGF (143%) levels in wound cells as compared with non-wound cells. The does-response profiles of down regulation demonstrated that the maximum inhibitions of α-SMA by 63% (p<0.05) and CTGF by 50% (p<0.1) were achieved by C-pc (6 nM) treated cells. In confocal assay, non-wound fibroblasts exhibited basal level of α-SMA staining, while wounded cells without C-pc treatment showed strong up-regulation of α-SMA by 147% (p<0.05). C-pc (6 nM) inhibited α-SMA expression by 70% (p<0.05) and reduced collagen contraction by 29% (p<0.05). C-pc seemed to lessen the over expression of CTGF, α-SMA, subsequently alleviating the fibrotic contracture. This study suggests the potential application of C-pc to regulation of the expression of pro-fibrotic mediators in scarring process and its potential usage as an efficient means for anti-fibrosis therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA