RESUMO
Interfacing a single photon with another quantum system is a key capability in modern quantum information science. It allows quantum states of matter, such as spin states of atoms, atomic ensembles or solids, to be prepared and manipulated by photon counting and, in particular, to be distributed over long distances. Such light-matter interfaces have become crucial to fundamental tests of quantum physics and realizations of quantum networks. Here we report non-classical correlations between single photons and phonons--the quanta of mechanical motion--from a nanomechanical resonator. We implement a full quantum protocol involving initialization of the resonator in its quantum ground state of motion and subsequent generation and read-out of correlated photon-phonon pairs. The observed violation of a Cauchy-Schwarz inequality is clear evidence for the non-classical nature of the mechanical state generated. Our results demonstrate the availability of on-chip solid-state mechanical resonators as light-matter quantum interfaces. The performance we achieved will enable studies of macroscopic quantum phenomena as well as applications in quantum communication, as quantum memories and as quantum transducers.
RESUMO
We present a time-over-threshold readout technique to count the number of activated pixels from an array of superconducting nanowire single photon detectors (SNSPDs). This technique places no additional heatload on the cryostat, and retains the intrinsic count rate of the time-tagger. We demonstrate proof-of-principle operation with respect to a four-pixel device. Furthermore, we show that, given some permissible error threshold, the number of pixels that can be reliably read out scales linearly with the intrinsic signal-to-noise ratio of the individual pixel response.
RESUMO
Applied quantum optics stands to revolutionise many aspects of information technology, provided performance can be maintained when scaled up. Silicon quantum photonics satisfies the scaling requirements of miniaturisation and manufacturability, but at 1.55 µm it suffers from problematic linear and nonlinear loss. Here we show that, by translating silicon quantum photonics to the mid-infrared, a new quantum optics platform is created which can simultaneously maximise manufacturability and miniaturisation, while reducing loss. We demonstrate the necessary platform components: photon-pair generation, single-photon detection, and high-visibility quantum interference, all at wavelengths beyond 2 µm. Across various regimes, we observe a maximum net coincidence rate of 448 ± 12 Hz, a coincidence-to-accidental ratio of 25.7 ± 1.1, and, a net two-photon quantum interference visibility of 0.993 ± 0.017. Mid-infrared silicon quantum photonics will bring new quantum applications within reach.
RESUMO
Unique star-like polymeric architectures composed of bottlebrush arms and a molecular spoked wheel (MSW) core were prepared by atom transfer radical polymerization (ATRP). A hexahydroxy-functionalized MSW (MSW(6-OH)) was synthesized and converted into a six-fold ATRP initiator (MSW(6-Br)). Linear chain arms were grafted from MSW(6-Br) and subsequently functionalized with ATRP moieties to form six-arm macroinitiators. Grafting of side chains from the macroinitiators yielded four different star-shaped bottlebrushes with varying lengths of arms and side chains, i.e., (450-g-20)6, (450-g-40)6, (300-g-60)6, and (300-g-150)6. Gel permeation chromatography analysis and molecular imaging by atomic force microscopy confirmed the formation of well-defined macromolecules with narrow molecular weight distributions. Upon adsorption to an aqueous substrate, the bottlebrush arms underwent prompt dissociation from the MSW core, followed by scission of covalent bonds in the bottlebrush backbones. The preferential cleavage of the arms is attributed to strong steric repulsion between bottlebrushes at the MSW branching center. Star-shaped macroinitiators may undergo aggregation which can be prevented by sonication.
RESUMO
Experimental restrictions imposed on the collection and detection of shortwave-infrared photons (SWIR) have impeded single molecule work on a large class of materials whose optical activity lies in the SWIR. Here we report the successful observation of room-temperature single nanocrystal photoluminescence at SWIR wavelengths using a highly efficient multielement superconducting nanowire single photon detector. We confirm that the photoluminescence from single lead sulfide nanocrystals is strongly antibunched, demonstrating the feasibility of performing sophisticated photon correlation experiments on individual weak SWIR emitters, and, more broadly, paving the way for sensitive measurements of spectral observables on infrared quantum systems that are incompatible with current detection techniques.
Assuntos
Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Fotometria/métodos , Espectrofotometria Infravermelho/métodos , Raios Infravermelhos , Teste de Materiais , Tamanho da Partícula , FótonsRESUMO
The scaling of many photonic quantum information processing systems is ultimately limited by the flux of quantum light throughout an integrated photonic circuit. Source brightness and waveguide loss set basic limits on the on-chip photon flux. While substantial progress has been made, separately, towards ultra-low loss chip-scale photonic circuits and high brightness single-photon sources, integration of these technologies has remained elusive. Here, we report the integration of a quantum emitter single-photon source with a wafer-scale, ultra-low loss silicon nitride photonic circuit. We demonstrate triggered and pure single-photon emission into a Si3N4 photonic circuit with ≈ 1 dB/m propagation loss at a wavelength of ≈ 930 nm. We also observe resonance fluorescence in the strong drive regime, showing promise towards coherent control of quantum emitters. These results are a step forward towards scaled chip-integrated photonic quantum information systems in which storing, time-demultiplexing or buffering of deterministically generated single-photons is critical.
RESUMO
Photon pair sources are fundamental building blocks for quantum entanglement and quantum communication. Recent studies in silicon photonics have documented promising characteristics for photon pair sources within the telecommunications band, including sub-milliwatt optical pump power, high spectral brightness, and high photon purity. However, most quantum systems suitable for local operations, such as storage and computation, support optical transitions in the visible or short near-infrared bands. In comparison to telecommunications wavelengths, the significantly higher optical attenuation in silica at such wavelengths limits the length scale over which optical-fiber-based quantum communication between such local nodes can take place. One approach to connect such systems over fiber is through a photon pair source that can bridge the visible and telecom bands, but an appropriate source, which should produce narrow-band photon pairs with a high signal-to-noise ratio, has not yet been developed. Here, we demonstrate an on-chip visible-telecom photon pair source for the first time, using high quality factor silicon nitride microresonators to generate bright photon pairs with an unprecedented coincidence-to-accidental ratio (CAR) up to (3.8 ± 0.2) × 103. We further demonstrate dispersion engineering of the microresonators to enable the connection of different species of trapped atoms/ions, defect centers, and quantum dots to the telecommunications bands for future quantum communication systems.
RESUMO
We measured the optical absorptance of superconducting nanowire single photon detectors. We found that 200-nm-pitch, 50%-fill-factor devices had an average absorptance of 21% for normally-incident front-illumination of 1.55-microm-wavelength light polarized parallel to the nanowires, and only 10% for perpendicularly-polarized light. We also measured devices with lower fill-factors and narrower wires that were five times more sensitive to parallel-polarized photons than perpendicular-polarized photons. We developed a numerical model that predicts the absorptance of our structures. We also used our measurements, coupled with measurements of device detection efficiencies, to determine the probability of photon detection after an absorption event. We found that, remarkably, absorbed parallel-polarized photons were more likely to result in detection events than perpendicular-polarized photons, and we present a hypothesis that qualitatively explains this result. Finally, we also determined the enhancement of device detection efficiency and absorptance due to the inclusion of an integrated optical cavity over a range of wavelengths (700-1700 nm) on a number of devices, and found good agreement with our numerical model.
RESUMO
Single self-assembled InAs/GaAs quantum dots are a promising solid-state quantum technology, with which vacuum Rabi splitting, single-photon-level nonlinearities, and bright, pure, and indistinguishable single-photon generation having been demonstrated. For such achievements, nanofabrication is used to create structures in which the quantum dot preferentially interacts with strongly-confined optical modes. An open question is the extent to which such nanofabrication may also have an adverse influence, through the creation of traps and surface states that could induce blinking, spectral diffusion, and dephasing. Here, we use photoluminescence imaging to locate the positions of single InAs/GaAs quantum dots with respect to alignment marks with < 5 nm uncertainty, allowing us to measure their behavior before and after fabrication. We track the quantum dot emission linewidth and photon statistics as a function of distance from an etched surface, and find that the linewidth is significantly broadened (up to several GHz) for etched surfaces within a couple hundred nanometers of the quantum dot. However, we do not observe appreciable reduction of the quantum dot radiative efficiency due to blinking. We also show that atomic layer deposition can stabilize spectral diffusion of the quantum dot emission, and partially recover its linewidth.
RESUMO
We have fabricated and tested superconducting single-photon detectors and demonstrated detection efficiencies of 57% at 1550-nm wavelength and 67% at 1064 nm. In addition to the peak detection efficiency, a median detection efficiency of 47.7% was measured over 132 devices at 1550 nm. These measurements were made at 1.8K, with each device biased to 97.5% of its critical current. The high detection efficiencies resulted from the addition of an optical cavity and anti-reflection coating to a nanowire photodetector, creating an integrated nanoelectrophotonic device with enhanced performance relative to the original device. Here, the testing apparatus and the fabrication process are presented. The detection efficiency of devices before and after the addition of optical elements is also reported.