Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
2.
Phys Rev Lett ; 100(17): 171603, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18518273

RESUMO

The mass scale M{s} of superstring theory is an arbitrary parameter that can be as low as few TeVs if the Universe contains large extra dimensions. We propose a search for the effects of Regge excitations of fundamental strings at the CERN Large Hadron Collider (LHC), in the process pp-->gamma+jet. The underlying parton process is dominantly the single photon production in gluon fusion, gg-->gammag, with open string states propagating in intermediate channels. If the photon mixes with the gauge boson of the baryon number, which is a common feature of D-brane quivers, the amplitude appears already at the string disk level. It is completely determined by the mixing parameter-and it is otherwise model (compactification) independent. Even for relatively small mixing, 100 fb{-1} of LHC data could probe deviations from standard model physics, at a 5sigma significance, for M{s} as large as 3.3 TeV.

3.
Phys Rev Lett ; 101(24): 241803, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19113614

RESUMO

Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC). In D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first resonant pole to determine the discovery potential of LHC for the first Regge excitations of the quark and gluon. Remarkably, the reach of LHC after a few years of running can be as high as 6.8 TeV. Even after the first 100 pb(-1) of integrated luminosity, string scales as high as 4.0 TeV can be discovered. Data on pp-->directgamma + jet can provide corroboration for string physics at scales as high as 5 TeV.

4.
Phys Rev Lett ; 98(12): 121101, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17501108

RESUMO

It is commonly assumed that high-energy gamma rays are made via either purely electromagnetic processes or the hadronic process of pion production, followed by decay. We investigate astrophysical contexts where a third process (A*) would dominate: namely, the photodisintegration of highly boosted nuclei followed by daughter deexcitation. Starburst regions such as Cygnus OB2 appear to be promising sites for TeV gamma-ray emission via this mechanism. A unique feature of the A* process is a sharp flattening of the energy spectrum below approximately 10 TeV/(T/eV) for gamma-ray emission from a thermal region of temperature T. The A* mechanism described herein offers an important contribution to gamma-ray astronomy in the era of intense observational activity.

5.
Phys Rev Lett ; 96(2): 021101, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486557

RESUMO

Ultrahigh energy cosmic rays and neutrinos probe energies far above the weak scale. Their usefulness might appear to be limited by astrophysical uncertainties; however, by simultaneously considering up- and down-going events, one may disentangle particle physics from astrophysics. We show that present data from the AMANDA experiment in the South Pole ice already imply an upper bound on neutrino cross sections at energy scales that will likely never be probed at man-made accelerators. The existing data also place an upper limit on the neutrino flux valid for any neutrino cross section. In the future, similar analyses of IceCube data will constrain neutrino properties and fluxes at the theta(10%) level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA