Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Nature ; 623(7989): 1079-1085, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938782

RESUMO

Decades of previous efforts to develop renal-sparing polyene antifungals were misguided by the classic membrane permeabilization model1. Recently, the clinically vital but also highly renal-toxic small-molecule natural product amphotericin B was instead found to kill fungi primarily by forming extramembraneous sponge-like aggregates that extract ergosterol from lipid bilayers2-6. Here we show that rapid and selective extraction of fungal ergosterol can yield potent and renal-sparing polyene antifungals. Cholesterol extraction was found to drive the toxicity of amphotericin B to human renal cells. Our examination of high-resolution structures of amphotericin B sponges in sterol-free and sterol-bound states guided us to a promising structural derivative that does not bind cholesterol and is thus renal sparing. This derivative was also less potent because it extracts ergosterol more slowly. Selective acceleration of ergosterol extraction with a second structural modification yielded a new polyene, AM-2-19, that is renal sparing in mice and primary human renal cells, potent against hundreds of pathogenic fungal strains, resistance evasive following serial passage in vitro and highly efficacious in animal models of invasive fungal infections. Thus, rational tuning of the dynamics of interactions between small molecules may lead to better treatments for fungal infections that still kill millions of people annually7,8 and potentially other resistance-evasive antimicrobials, including those that have recently been shown to operate through supramolecular structures that target specific lipids9.


Assuntos
Antifúngicos , Rim , Polienos , Esteróis , Animais , Humanos , Camundongos , Anfotericina B/análogos & derivados , Anfotericina B/química , Anfotericina B/toxicidade , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Farmacorresistência Fúngica , Ergosterol/química , Ergosterol/metabolismo , Rim/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Polienos/química , Polienos/metabolismo , Polienos/farmacologia , Inoculações Seriadas , Esteróis/química , Esteróis/metabolismo , Fatores de Tempo
2.
PLoS Biol ; 22(6): e3002693, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905306

RESUMO

Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.

3.
Cell ; 148(1-2): 126-38, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265407

RESUMO

A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Animais , Candida albicans/fisiologia , Candida albicans/ultraestrutura , Candidíase Bucal/microbiologia , Candidíase Vulvovaginal/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Genes Fúngicos , Masculino , Microscopia Confocal , Ratos , Ratos Sprague-Dawley , Estomatite sob Prótese/microbiologia
4.
PLoS Pathog ; 20(5): e1012225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739655

RESUMO

Biofilm formation by the fungal pathogen Candida albicans is the basis for its ability to infect medical devices. The metabolic gene ERG251 has been identified as a target of biofilm transcriptional regulator Efg1, and here we report that ERG251 is required for biofilm formation but not conventional free-living planktonic growth. An erg251Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo catheter infection model. In both in vitro and in vivo biofilm contexts, cell number is reduced and hyphal length is limited. To determine whether the mutant defect is in growth or some other aspect of biofilm development, we examined planktonic cell features in a biofilm-like environment, which was approximated with sealed unshaken cultures. Under those conditions, the erg251Δ/Δ mutation causes defects in growth and hyphal extension. Overexpression in the erg251Δ/Δ mutant of the paralog ERG25, which is normally expressed more weakly than ERG251, partially improves biofilm formation and biofilm hyphal content, as well as growth and hyphal extension in a biofilm-like environment. GC-MS analysis shows that the erg251Δ/Δ mutation causes a defect in ergosterol accumulation when cells are cultivated under biofilm-like conditions, but not under conventional planktonic conditions. Overexpression of ERG25 in the erg251Δ/Δ mutant causes some increase in ergosterol levels. Finally, the hypersensitivity of efg1Δ/Δ mutants to the ergosterol inhibitor fluconazole is reversed by ERG251 overexpression, arguing that reduced ERG251 expression contributes to this efg1Δ/Δ phenotype. Our results indicate that ERG251 is required for biofilm formation because its high expression levels are necessary for ergosterol synthesis in a biofilm-like environment.


Assuntos
Biofilmes , Candida albicans , Candidíase , Proteínas Fúngicas , Biofilmes/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/genética , Candida albicans/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Animais , Candidíase/microbiologia , Candidíase/metabolismo , Hifas/metabolismo , Camundongos , Regulação Fúngica da Expressão Gênica , Ergosterol/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação
5.
PLoS Pathog ; 19(1): e1011109, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696432

RESUMO

Biofilms of the fungal pathogen Candida albicans include abundant long filaments called hyphae. These cells express hypha-associated genes, which specify diverse virulence functions including surface adhesins that ensure biofilm integrity. Biofilm formation, virulence, and hypha-associated gene expression all depend upon the transcription factor Efg1. This transcription factor has been characterized extensively in the C. albicans type strain SC5314 and derivatives, but only recently has its function been explored in other clinical isolates. Here we define a principal set of Efg1-responsive genes whose expression is significantly altered by an efg1Δ/Δ mutation across 17 clinical isolates. This principal gene set includes 68 direct Efg1 targets, whose 5' regions are bound by Efg1 in five clinical isolates, and 42 indirect Efg1 targets, whose 5' regions are not detectably bound by Efg1. Three direct Efg1 target genes encode transcription factors-BRG1, UME6, and WOR3 -whose increased expression in an efg1Δ/Δ mutant restores expression of multiple indirect and direct principal targets, as well as biofilm formation ability. Although BRG1 and UME6 are well known positive regulators of hypha-associated genes and biofilm formation, WOR3 is best known as an antagonist of Efg1 in the sexual mating pathway. We confirm the positive role of WOR3 in biofilm formation with the finding that a wor3Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo biofilm model. Positive control of Efg1 direct target genes by other Efg1 direct target genes-BRG1, UME6, and WOR3 -may buffer principal Efg1-responsive gene expression against the impact of genetic variation in the C. albicans species.


Assuntos
Candida albicans , Proteínas Fúngicas , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biofilmes , Mutação , Hifas/genética
6.
Clin Infect Dis ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902929

RESUMO

The in vitro susceptibility testing interpretive criteria (STIC) for TZP against Enterobacterales were recently updated by the Food and Drug Administration (FDA), Clinical & Laboratory Standards Institute (CLSI), and European Committee on Antimicrobial Susceptibility Testing (EUCAST). The United States Committee on Antimicrobial Susceptibility Testing (USCAST) also recently reviewed TZP STIC for Enterobacterales and arrived at different STIC for Enterobacterales and herein we explain our recommendations and rationale behind them. Based on our review of the available data, USCAST does not recommend TZP STIC for certain Enterobacterales species that have a moderate to high likelihood of clinically significant AmpC production (E. cloacae, C. freundii, and K. aerogenes only) or for third-generation cephalosporin-non-susceptible (3GC-NS) Enterobacterales. USCAST recommends a TZP susceptibility breakpoint of ≤ 16/4 mg/L for third-generation cephalosporin-susceptible (3GC-S) Enterobacterales but only endorses the use of extended infusion TZP regimens for patients with infections due to these pathogens.

7.
Antimicrob Agents Chemother ; 68(3): e0163123, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319077

RESUMO

SF001 is a next-generation polyene antifungal drug in development, designed to have increased specificity to fungal ergosterol, which is absent in humans, and decreased binding to cholesterol. SF001 demonstrates long-acting, potent, broad-spectrum fungicidal activity. The goal of the current study was to determine the pharmacodynamic index and target of SF001 in an immunocompromised mouse model of invasive pulmonary aspergillosis against six Aspergillus fumigatus isolates. Minimum inhibitory concentration (MIC) values ranged from 0.5 to 2.0 mg/L. Plasma and epithelial lining fluid (ELF) pharmacokinetics were performed following single intraperitoneal doses of 1, 4, 16, and 64 mg/kg. Treatment efficacy was assessed with each of the six fungal isolates using daily doses of SF001 ranging from 0.25 to 64 mg/kg/day over a 96-h treatment duration. Efficacy was assessed by A. fumigatus quantitative PCR of conidial equivalents from lung homogenates. Nonlinear regression analysis using the Hill equation demonstrated that the 24-h exposure-response relationships for both plasma and ELF area under the concentration/MIC and Cmax/MIC ratios were strong and relatively similar [coefficient of determination (R2) = 0.74-0.75). Exposure-response relationships included a median plasma 24-h Cmax/MIC target for stasis and 1-log kill endpoint of 0.5 and 0.6, respectively. The present studies demonstrated in vitro and in vivo SF001 potency against A. fumigatus. These results have potential relevance for SF001 clinical dose selection and evaluation of susceptibility breakpoints.


Assuntos
Aspergilose Pulmonar Invasiva , Humanos , Animais , Camundongos , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/microbiologia , Antifúngicos/uso terapêutico , Antifúngicos/farmacocinética , Aspergillus fumigatus , Pulmão/microbiologia , Testes de Sensibilidade Microbiana
8.
Antimicrob Agents Chemother ; 68(1): e0095523, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38092678

RESUMO

The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.


Assuntos
Antifúngicos , Candida , Humanos , Antifúngicos/farmacologia , Candida auris , Lipossomos , Testes de Sensibilidade Microbiana , Biofilmes
9.
Antimicrob Agents Chemother ; 67(5): e0008123, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37097144

RESUMO

New antifungal therapies are needed for both systemic, invasive infections in addition to superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to nonsystemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2 to 16 µg/mL) against medically important yeasts and molds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus. Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce Candida albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial preclinical data suggest that molecules of this class may warrant further study and development for nonsystemic applications.


Assuntos
Candidíase , Dispositivos de Acesso Vascular , Ratos , Animais , Suínos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Candida , Candida auris , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Biofilmes , Testes de Sensibilidade Microbiana
10.
Cell Microbiol ; 23(5): e13307, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33403715

RESUMO

The unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER-resident protein, inositol-requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling. Concordantly, an Ire1-mutant strain exhibits pleiotropic roles in ER stress response, antifungal tolerance, cell wall regulation and virulence-related traits. Hac1 is the downstream target of C. albicans Ire1 as it initiates the unconventional splicing of the 19 bp intron from HAC1 mRNA during tunicamycin-induced ER stress. Ire1 also activates the UPR in response to perturbations in cell wall integrity and cell membrane homeostasis in a manner that does not necessitate the splicing of HAC1 mRNA. Furthermore, the Ire1-mutant strain is severely defective in hyphal morphogenesis and biofilm formation as well as in establishing a successful infection in vivo. Together, these findings demonstrate that C. albicans Ire1 functions to regulate traits that are essential for virulence and suggest its importance in responding to multiple stresses, thus integrating various stress signals to maintain ER homeostasis.


Assuntos
Candida albicans/patogenicidade , Candidíase/microbiologia , Estresse do Retículo Endoplasmático , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Adaptação Fisiológica , Animais , Candida albicans/enzimologia , Candida albicans/genética , Candida albicans/fisiologia , Membrana Celular/fisiologia , Parede Celular/fisiologia , Retículo Endoplasmático/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Homeostase , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases/genética , Splicing de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Virulência
11.
PLoS Biol ; 17(8): e3000422, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398188

RESUMO

Histone H3 and its variants regulate gene expression but the latter are absent in most ascomycetous fungi. Here, we report the identification of a variant histone H3, which we have designated H3VCTG because of its exclusive presence in the CTG clade of ascomycetes, including Candida albicans, a human pathogen. C. albicans grows both as single yeast cells and hyphal filaments in the planktonic mode of growth. It also forms a three-dimensional biofilm structure in the host as well as on human catheter materials under suitable conditions. H3VCTG null (hht1/hht1) cells of C. albicans are viable but produce more robust biofilms than wild-type cells in both in vitro and in vivo conditions. Indeed, a comparative transcriptome analysis of planktonic and biofilm cells reveals that the biofilm circuitry is significantly altered in H3VCTG null cells. H3VCTG binds more efficiently to the promoters of many biofilm-related genes in the planktonic cells than during biofilm growth, whereas the binding of the core canonical histone H3 on the corresponding promoters largely remains unchanged. Furthermore, biofilm defects associated with master regulators, namely, biofilm and cell wall regulator 1 (Bcr1), transposon enhancement control 1 (Tec1), and non-dityrosine 80 (Ndt80), are significantly rescued in cells lacking H3VCTG. The occupancy of the transcription factor Bcr1 at its cognate promoter binding sites was found to be enhanced in the absence of H3VCTG in the planktonic form of growth resulting in enhanced transcription of biofilm-specific genes. Further, we demonstrate that co-occurrence of valine and serine at the 31st and 32nd positions in H3VCTG, respectively, is essential for its function. Taken together, we show that even in a unicellular organism, differential gene expression patterns are modulated by the relative occupancy of the specific histone H3 type at the chromatin level.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Histonas/metabolismo , Candidíase/microbiologia , Cromatina/genética , Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Histonas/genética , Humanos , Fatores de Transcrição/metabolismo
12.
Curr Opin Infect Dis ; 34(4): 288-296, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010233

RESUMO

PURPOSE OF REVIEW: A number of pharmacokinetic and pharmacodynamic factors in critically ill or severely immunosuppressed patients influence the effectiveness of antifungal therapy making dosing less certain. Recent position papers from infectious diseases societies and working groups have proposed methods for dosage individualization of antibiotics in critically ill patients using a combination of population pharmacokinetic models, Monte-Carlo simulation and therapeutic drug monitoring (TDM) to guide dosing. In this review, we examine the current limitations and practical issues of adapting a pharmacometrics-guided dosing approaches to dosing of antifungals in critically ill or severely immunosuppressed populations. RECENT FINDINGS: We review the current status of antifungal susceptibility testing and challenges in incorporating TDM into Bayesian dose prediction models. We also discuss issues facing pharmacometrics dosage adjustment of newer targeted chemotherapies that exhibit severe pharmacokinetic drug-drug interactions with triazole antifungals. SUMMARY: Although knowledge of antifungal pharmacokinetic/pharmacodynamic is maturing, the practical application of these concepts towards point-of-care dosage individualization is still limited. User-friendly pharmacometric models are needed to improve the utility of TDM and management of a growing number of severe pharmacokinetic antifungal drug-drug interactions with targeted chemotherapies.


Assuntos
Antifúngicos , Preparações Farmacêuticas , Teorema de Bayes , Interações Medicamentosas , Monitoramento de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Incerteza
13.
PLoS Biol ; 16(10): e2006872, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30296253

RESUMO

Cells from all kingdoms of life produce extracellular vesicles (EVs). Their cargo is protected from the environment by the surrounding lipid bilayer. EVs from many organisms have been shown to function in cell-cell communication, relaying signals that impact metazoan development, microbial quorum sensing, and pathogenic host-microbe interactions. Here, we have investigated the production and functional activities of EVs in a surface-associated microbial community or biofilm of the fungal pathogen Candida albicans. Crowded communities like biofilms are a context in which EVs are likely to function. Biofilms are noteworthy because they are encased in an extracellular polymeric matrix and because biofilm cells exhibit extreme tolerance to antimicrobial compounds. We found that biofilm EVs are distinct from those produced by free-living planktonic cells and display strong parallels in composition to biofilm matrix material. The functions of biofilm EVs were delineated with a panel of mutants defective in orthologs of endosomal sorting complexes required for transport (ESCRT) subunits, which are required for normal EV production in diverse eukaryotes. Most ESCRT-defective mutations caused reduced biofilm EV production, reduced matrix polysaccharide levels, and greatly increased sensitivity to the antifungal drug fluconazole. Matrix accumulation and drug hypersensitivity of ESCRT mutants were reversed by addition of wild-type (WT) biofilm EVs. Vesicle complementation showed that biofilm EV function derives from specific cargo proteins. Our studies indicate that C. albicans biofilm EVs have a pivotal role in matrix production and biofilm drug resistance. Biofilm matrix synthesis is a community enterprise; prior studies of mixed cell biofilms have demonstrated extracellular complementation. Therefore, EVs function not only in cell-cell communication but also in the sharing of microbial community resources.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Microscopia Crioeletrônica , Farmacorresistência Fúngica , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/fisiologia , Matriz Extracelular de Substâncias Poliméricas/ultraestrutura , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/ultraestrutura , Proteínas Fúngicas/metabolismo , Humanos , Metabolismo dos Lipídeos , Interações Microbianas/efeitos dos fármacos , Interações Microbianas/fisiologia , Microscopia Eletrônica de Varredura , Modelos Biológicos , Mutação , Proteoma/metabolismo
14.
J Infect Dis ; 222(Suppl 3): S175-S198, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32756879

RESUMO

In recent years, the global public health community has increasingly recognized the importance of antimicrobial stewardship (AMS) in the fight to improve outcomes, decrease costs, and curb increases in antimicrobial resistance around the world. However, the subject of antifungal stewardship (AFS) has received less attention. While the principles of AMS guidelines likely apply to stewarding of antifungal agents, there are additional considerations unique to AFS and the complex field of fungal infections that require specific recommendations. In this article, we review the literature on AMS best practices and discuss AFS through the lens of the global core elements of AMS. We offer recommendations for best practices in AFS based on a synthesis of this evidence by an interdisciplinary expert panel of members of the Mycoses Study Group Education and Research Consortium. We also discuss research directions in this rapidly evolving field. AFS is an emerging and important component of AMS, yet requires special considerations in certain areas such as expertise, education, interventions to optimize utilization, therapeutic drug monitoring, and data analysis and reporting.


Assuntos
Antifúngicos/uso terapêutico , Gestão de Antimicrobianos/normas , Medicina Baseada em Evidências/normas , Micoses/tratamento farmacológico , Guias de Prática Clínica como Assunto , Antifúngicos/farmacologia , Competência Clínica , Monitoramento de Medicamentos/normas , Prescrições de Medicamentos/normas , Farmacorresistência Fúngica , Humanos , Prescrição Inadequada/prevenção & controle , Micoses/microbiologia
15.
J Biol Chem ; 294(8): 2700-2713, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30593499

RESUMO

Copper-only superoxide dismutases (SODs) represent a new class of SOD enzymes that are exclusively extracellular and unique to fungi and oomycetes. These SODs are essential for virulence of fungal pathogens in pulmonary and disseminated infections, and we show here an additional role for copper-only SODs in promoting survival of fungal biofilms. The opportunistic fungal pathogen Candida albicans expresses three copper-only SODs, and deletion of one of them, SOD5, eradicated candidal biofilms on venous catheters in a rodent model. Fungal copper-only SODs harbor an irregular active site that, unlike their Cu,Zn-SOD counterparts, contains a copper co-factor unusually open to solvent and lacks zinc for stabilizing copper binding, making fungal copper-only SODs highly vulnerable to metal chelators. We found that unlike mammalian Cu,Zn-SOD1, C. albicans SOD5 indeed rapidly loses its copper to metal chelators such as EDTA, and binding constants for Cu(II) predict that copper-only SOD5 has a much lower affinity for copper than does Cu,Zn-SOD1. We screened compounds with a variety of indications and identified several metal-binding compounds, including the ionophore pyrithione zinc (PZ), that effectively inhibit C. albicans SOD5 but not mammalian Cu,Zn-SOD1. We observed that PZ both acts as an ionophore that promotes uptake of toxic metals and inhibits copper-only SODs. The pros and cons of a vulnerable active site for copper-only SODs and the possible exploitation of this vulnerability in antifungal drug design are discussed.


Assuntos
Candida albicans/enzimologia , Infecções Relacionadas a Cateter/prevenção & controle , Catéteres/microbiologia , Cobre/metabolismo , Inibidores Enzimáticos/farmacologia , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/patogenicidade , Candidemia/enzimologia , Candidemia/etiologia , Candidemia/prevenção & controle , Domínio Catalítico , Infecções Relacionadas a Cateter/enzimologia , Infecções Relacionadas a Cateter/etiologia , Catéteres/efeitos adversos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Conformação Proteica , Ratos , Zinco/farmacologia
16.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32868332

RESUMO

MRX-8 is a novel polymyxin analogue in development for the treatment of infections caused by Gram-negative pathogens, including those resistant to other antibiotic classes. In the present study, we examined the pharmacodynamic activity of MRX-8 against a variety of common Gram-negative pathogens in the neutropenic mouse thigh and lung models. Additionally, we examined polymyxin B (PMB) as a comparator. Plasma pharmacokinetics of MRX-8 and PMB were linear over a broad dosing range of 0.156 to 10 mg/kg of body weight and had similar AUC0-∞ (area under the drug concentration-time curve from 0 h to infinity) exposures of MRX-8, 0.22 to 12.64 mg · h/liter, and PMB, 0.12 to 13.22 mg · h/liter. Dose fractionation was performed for MRX-8 using a single Escherichia coli isolate, and the results demonstrated that both Cmax (maximum concentration of drug in serum)/MIC and AUC/MIC ratios were strongly associated with efficacy. In the thigh model, dose-ranging studies included strains of E. coli (n = 3), Pseudomonas aeruginosa (n = 2), Klebsiella pneumoniae (n = 3), and Acinetobacter baumannii (n = 1). Both MRX-8 and PMB exhibited increased effects with increasing doses. MRX-8 and PMB free AUC/MIC exposures for net stasis were similar for E. coli and K. pneumoniae at 20 to 30. Notably, for P. aeruginosa and A. baumannii, the free AUC/MIC ratio for stasis was numerically much smaller for MRX-8 at 6 to 8 than for PMB at 16 to 37. In the lung model, MRX-8 was also more effective than PMB when dosed to achieve similar free-drug AUC exposures over the study period. MRX-8 is a promising novel polymyxin analogue with in vivo activity against many different clinically relevant species in both the mouse thigh and lung models.


Assuntos
Escherichia coli , Polimixinas , Animais , Antibacterianos/uso terapêutico , Pulmão , Camundongos , Testes de Sensibilidade Microbiana , Coxa da Perna
17.
Artigo em Inglês | MEDLINE | ID: mdl-31712210

RESUMO

Omadacycline is an effective therapy for community-acquired bacterial pneumonia (CABP). Given its potent activity against methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA), we sought to determine the pharmacodynamic activity and target pharmacokinetic/pharmacodynamic (PK/PD) exposures associated with a therapeutic effect in the neutropenic mouse pneumonia model against 10 MSSA/MRSA strains. The area under the concentration-time curve (AUC)/MIC associated with 1-log kill was noted at 24-h epithelial lining fluid (ELF) and plasma AUC/MIC exposures of ∼2 (ELF range, <0.93 to 19; plasma range, <1.06 to 17) and 2-log kill was noted at 24-h ELF and plasma AUC/MIC exposures of ∼12 (ELF range, 2.5 to 130; plasma range, 3.5 to 151).


Assuntos
Antibacterianos/farmacologia , Pneumonia/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Tetraciclinas/farmacologia , Animais , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecções Comunitárias Adquiridas/microbiologia , Modelos Animais de Doenças , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Pneumonia/microbiologia , Infecções Estafilocócicas/microbiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-31767718

RESUMO

The polymyxins are important agents for carbapenem-resistant Gram-negative bacilli. The United States Committee on Antimicrobial Susceptibility Testing breakpoint recommendations for colistin and polymyxin B are that isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae are considered susceptible at MIC values of ≤2 mg/liter. These recommendations are contingent upon dosing and testing strategies that are described in this commentary. Importantly, these recommendations are not applicable to lower respiratory tract infections, for which we recommend no breakpoints. Furthermore, there is no breakpoint recommendation for polymyxin B for lower urinary tract infections.


Assuntos
Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/normas , Polimixinas/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Colistina/farmacologia , Guias como Assunto , Humanos , Polimixina B/farmacologia , Polimixinas/administração & dosagem , Polimixinas/uso terapêutico , Infecções Respiratórias/microbiologia , Estados Unidos , Infecções Urinárias/microbiologia
19.
J Antimicrob Chemother ; 75(10): 3023-3028, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32710097

RESUMO

BACKGROUND: Isavuconazole is a triazole antifungal available in IV and capsule formulation. Prescribing information states that capsules should not be chewed, crushed, dissolved or opened because the drug was not studied in this manner. However, considering the pharmacokinetics of the capsules, we theorized opening and sprinkling the contents into an enteral feeding tube (EFT) would result in adequate absorption and systemic concentrations of isavuconazole. OBJECTIVES: To determine whether patients receiving isavuconazonium sulphate capsules via EFT would achieve clinical blood concentrations of isavuconazole. METHODS: Nineteen solid organ and HCT recipients receiving isavuconazole via EFT for prevention or treatment of invasive fungal infection (IFI) were prospectively identified at four academic medical centres in the USA. Patients were included in this evaluation if they received isavuconazole via EFT for at least 5 days and therapeutic drug monitoring (TDM) was performed. RESULTS: TDM was performed after a median of 7 days (range 6-17) following EFT administration and 15 days (range 7-174) of isavuconazole therapy overall. Median isavuconazole concentration was 1.8 µg/mL (range 0.3-5.2). Median isavuconazole concentrations in patients with or without prior IV administration were 1.8 µg/mL (range 0.3-5.2) and 2.2 µg/mL (range 0.8-3.6; P = 0.896), respectively. Concentrations achieved with the EFT route were similar to or greater than the corresponding concentrations via the IV route in six patients who had TDM performed during both routes of administration. CONCLUSIONS: It is reasonable to consider opening isavuconazonium sulphate capsules and administering the contents enterally for prevention and treatment of IFI.


Assuntos
Nutrição Enteral , Transplantados , Antifúngicos/uso terapêutico , Cápsulas , Humanos , Nitrilas , Piridinas , Triazóis
20.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374351

RESUMO

Candida albicans forms extremely drug-resistant biofilms, which present a serious threat to public health globally. Biofilm-based infections are difficult to treat due to the lack of efficient antifungal therapeutics, resulting in an urgent demand for the development of novel antibiofilm strategies. In this study, the antibiofilm activity of DiMIQ (5,11-dimethyl-5H-indolo[2,3-b]quinoline) was evaluated against C. albicans biofilms. DiMIQ is a synthetic derivative of indoquinoline alkaloid neocryptolepine isolated from a medicinal African plant, Cryptolepis sanguinolenta. Antifungal activity of DiMIQ was determined using the XTT assay, followed by cell wall and extracellular matrix profiling and cellular proteomes. Here, we demonstrated that DiMIQ inhibited C. albicans biofilm formation and altered fungal cell walls and the extracellular matrix. Cellular proteomics revealed inhibitory action against numerous translation-involved ribosomal proteins, enzymes involved in general energy producing processes and select amino acid metabolic pathways including alanine, aspartate, glutamate, valine, leucine and isoleucine. DiMIQ also stimulated pathways of cellular oxidation, metabolism of carbohydrates, amino acids (glycine, serine, threonine, arginine, phenylalanine, tyrosine, tryptophan) and nucleic acids (aminoacyl-tRNA biosynthesis, RNA transport, nucleotide metabolism). Our findings suggest that DiMIQ inhibits C. albicans biofilms by arresting translation and multidirectional pathway reshaping of cellular metabolism. Overall, this agent may provide a potent alternative to treating biofilm-associated Candida infections.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Carbolinas/farmacologia , Proteínas de Neoplasias/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA