Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Med Virol ; 96(2): e29416, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285457

RESUMO

The raising of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants led to the use of COVID-19 bivalent vaccines, which include antigens of the wild-type (WT) virus, and of the Omicron strain. In this study, we aimed to evaluate the impact of bivalent vaccination on the neutralizing antibody (NAb) response. We enrolled 93 volunteers who had received three or four doses of monovalent vaccines based on the original virus (n = 61), or a booster shot with the bivalent vaccine (n = 32). Serum samples collected from volunteers were subjected to neutralization assays using the WT SARS-CoV-2, and Omicron subvariants. In addition, immunoinformatics to quantify and localize highly conserved NAb epitopes were performed. As main result, we observed that the neutralization titers of samples from individuals vaccinated with the bivalent vaccine were higher for the original virus, in comparison to their capacity of neutralizing the Omicron variant and its subvariants. NAb that recognize epitopes mostly conserved in the WT SARS-CoV-2 were boosted, while those that recognize epitopes mostly present in the Omicron variant, and subvariants were primed. These results indicate that formulation of future vaccines shall consider to target present viruses, and not viruses that no longer circulate.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinação , Imunização Secundária , Anticorpos Neutralizantes , Epitopos/genética , Vacinas Combinadas
2.
J Med Virol ; 95(8): e29046, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37605969

RESUMO

Rabies is a fatal viral zoonosis caused by rabies virus (RABV). RABV infects the central nervous system and triggers acute encephalomyelitis in both humans and animals. Endemic in the Brazilian Northeast region, RABV emergence in distinct wildlife species has been identified as a source of human rabies infection and as such, constitutes a public health concern. Here, we performed post-mortem RABV analyses of 144 encephalic tissues from bats sampled from January to July 2022, belonging to 15 different species. We identified phylogenetically distinct RABV from Phyllostomidae and Molossidae bats circulating in Northeastern Brazil. Phylogenetic clustering revealed the close evolutionary relationship between RABV viruses circulating in bats and variants hosted in white-tufted marmosets, commonly captured to be kept as pets and linked to human rabies cases and deaths in Brazil. Our findings underline the urgent need to implement a phylogenetic-scale epidemiological surveillance platform to track multiple RABV variants which may pose a threat to both humans and animals.


Assuntos
Quirópteros , Vírus da Raiva , Raiva , Animais , Humanos , Callithrix , Vírus da Raiva/genética , Raiva/epidemiologia , Raiva/veterinária , Brasil/epidemiologia , Filogenia
3.
J Med Virol ; 95(2): e28481, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36609686

RESUMO

The main coronavirus disease 2019 (COVID-19) vaccine formulations used today are mainly based on the wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein as an antigen. However, new virus variants capable of escaping neutralization activity of serum antibodies elicited in vaccinated individuals have emerged. The Omicron (B.1.1.529) variant caused epidemics in regions of the world in which most of the population has been vaccinated. In this study, we aimed to understand what determines individual's susceptibility to Omicron in a scenario of extensive vaccination. For that purpose, we collected nasopharynx swab (n = 286) and blood samples (n = 239) from flu-like symptomatic patients, as well as their vaccination history against COVID-19. We computed the data regarding vaccine history, COVID-19 diagnosis, COVID-19 serology, and viral genome sequencing to evaluate their impact on the number of infections. As main results, we showed that vaccination in general did not reduce the number of individuals infected by Omicron, even with an increased immune response found among vaccinated, noninfected individuals. Nonetheless, we found that individuals who received the third vaccine dose showed significantly reduced susceptibility to Omicron infections. A relevant evidence that support this finding was the higher virus neutralization capacity of serum samples of most patients who received the third vaccine dose. In summary, this study shows that boosting immune responses after a third vaccine dose reduces susceptibility to COVID-19 caused by the Omicron variant. Results presented in this study are useful for future formulations of COVID-19 vaccination policies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Teste para COVID-19 , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
Nanomedicine ; 45: 102595, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36031045

RESUMO

The development of safe and effective vaccine formulations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a hallmark in the history of vaccines. Here we report a COVID-19 subunit vaccine based on a SARS-CoV-2 Spike protein receptor binding domain (RBD) incorporated into nano-multilamellar vesicles (NMV) associated with monophosphoryl lipid A (MPLA). The results based on immunization of C57BL/6 mice demonstrated that recombinant antigen incorporation into NMVs improved antibody and T-cell responses without inducing toxic effects under both in vitro and in vivo conditions. Administration of RBD-NMV-MPLA formulations modulated antigen avidity and IgG subclass responses, whereas MPLA incorporation improved the activation of CD4+/CD8+ T-cell responses. In addition, immunization with the complete vaccine formulation reduced the number of doses required to achieve enhanced serum virus-neutralizing antibody titers. Overall, this study highlights NMV/MPLA technology, displaying the performance improvement of subunit vaccines against SARS-CoV-2, as well as other infectious diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade , Imunoglobulina G , Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas
5.
Nanomedicine ; 32: 102334, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33188909

RESUMO

Self-assembling proteins may be generated after the addition of short specific amino acid sequences at both the N- and C-terminal ends. To date, this approach has not been evaluated regarding the impact of self-assembled proteins on the induction of immune responses. In the present study, we report the application of this experimental approach to the immunogenicity of protein antigens by measuring the antibody responses in mice immunized with nanoparticles made with a recombinant form of Zika virus nonstructural protein 1 (∆NS1). The results clearly indicated that ∆NS1-derived nanoparticles (NP-∆NS1) are assembled into a 3-dimensional structure with a high degree of multimerization. While ∆NS1 proved to be a weak immunogen, immunization with NP-∆NS1 enhanced subunit vaccines' immunogenicity with improved longevity in vaccinated mice. Thus, immunization with self-assembled antigens (nanovaccines) represents a new and promising strategy to enhance NS1-specific antibodies' induction based on purified recombinant proteins.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Nanopartículas/química , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Zika virus/imunologia , Animais , Epitopos/imunologia , Feminino , Imunização , Imunoglobulina G/metabolismo , Camundongos Endogâmicos C57BL
6.
Nanomedicine ; 37: 102445, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303841

RESUMO

Chikungunya virus (CHIKV) is responsible for a self-limited illness that can evolve into long-lasting painful joint inflammation. In this study, we report a novel experimental CHIKV vaccine formulation of lipid nanoparticles loaded with a recombinant protein derived from the E2 structural protein. This antigen fragment, designated ∆E2.1, maintained the antigenicity of the native viral protein and was specifically recognized by antibodies induced in CHIKV-infected patients. The antigen has been formulated into nanoparticles consisting of nano-multilamellar vesicles (NMVs) combined with the adjuvant monophosphoryl lipid A (MPLA). The vaccine formulation demonstrated a depot effect, leading to controlled antigen release, and induced strong antibody responses significantly higher than in mice immunized with the purified protein combined with the adjuvant. More relevantly, E2-specific antibodies raised in mice immunized with ∆E2.1-loaded NMV-MPLA neutralized CHIKV under in vitro conditions. Taken together, the results demonstrated that the new nanoparticle-based vaccine formulation represents a promising approach for the development of effective anti-CHIKV vaccines.


Assuntos
Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Lipossomos/imunologia , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/efeitos dos fármacos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/efeitos dos fármacos , Anticorpos Antivirais/imunologia , Febre de Chikungunya/terapia , Febre de Chikungunya/virologia , Vírus Chikungunya/patogenicidade , Humanos , Lipossomos/química , Lipossomos/farmacologia , Camundongos , Nanopartículas/química , Proteínas do Envelope Viral/farmacologia , Vacinas Virais/imunologia
7.
J Infect Dis ; 216(2): 172-181, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28838147

RESUMO

Background: Zika virus (ZIKV) infections have been linked to different levels of clinical outcomes, ranging from mild rash and fever to severe neurological complications and congenital malformations. Methods: We investigated the clinical and immunological response, focusing on the immune mediators profile in 95 acute ZIKV-infected adult patients from Campinas, Brazil. These patients included 6 pregnant women who later delivered during the course of this study. Clinical observations were recorded during hospitalization. Levels of 45 immune mediators were quantified using multiplex microbead-based immunoassays. Results: Whereas 11.6% of patients had neurological complications, 88.4% displayed mild disease of rash and fever. Several immune mediators were specifically higher in ZIKV-infected patients, and levels of interleukin 10, interferon gamma-induced protein 10 (IP-10), and hepatocyte growth factor differentiated between patients with or without neurological complications. Interestingly, higher levels of interleukin 22, monocyte chemoattractant protein 1, TNF-α, and IP-10 were observed in ZIKV-infected pregnant women carrying fetuses with fetal growth-associated malformations. Notably, infants with congenital central nervous system deformities had significantly higher levels of interleukin 18 and IP-10 but lower levels of hepatocyte growth factor than those without such abnormalities born to ZIKV-infected mothers. Conclusions: This study identified several key markers for the control of ZIKV pathogenesis. This will allow a better understanding of the molecular mechanisms of ZIKV infection in patients.


Assuntos
Citocinas/sangue , Malformações do Sistema Nervoso/epidemiologia , Complicações Infecciosas na Gravidez/epidemiologia , Infecção por Zika virus/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Brasil/epidemiologia , Criança , Feminino , Retardo do Crescimento Fetal/virologia , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Malformações do Sistema Nervoso/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Resultado da Gravidez , Carga Viral , Adulto Jovem , Zika virus , Infecção por Zika virus/complicações
10.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464151

RESUMO

Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.

11.
Probiotics Antimicrob Proteins ; 15(6): 1513-1528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36346611

RESUMO

Individuals with chronic obstructive pulmonary disease (COPD) are more susceptible to exacerbation crisis triggered by secondary lung infections due to the dysfunction of antiviral signaling, principally via suppression of IFN-γ. Although the probiotic is known for controlling pulmonary inflammation in COPD, the influence of the Lactobacillus rhamnosus (Lr) on antiviral signaling in bronchial epithelium exposed to cigarette smoke extract (CSE) and viruses, remains unknown. Thus, the present study investigated the Lr effect on the antiviral signaling and the secretion of inflammatory mediators from bronchial epithelial cells (16HBE cells) exposed to CSE and SARS-CoV-2. The 16HBE cells were cultured, treated with Lr, stimulated with CSE, and infected with SARS-CoV-2. The cellular viability was evaluated using the MTT assay and cytotoxicity measured by lactate dehydrogenase (LDH) activity. The viral load, TLR2, TLR3, TLR4, TLR7, TLR8, MAVS, MyD88, and TRIF were quantified using specific PCR. The pro-inflammatory mediators were measured by a multiplex biometric immunoassay, and angiotensin converting enzyme 2 (ACE2) activity, NF-κB, RIG-I, MAD5, and IRF3 were measured using specific ELISA kits. Lr decreased viral load, ACE2, pro-inflammatory mediators, TLR2, TLR4, NF-κB, TLR3, TLR7, and TLR8 as well as TRIF and MyD88 expression in CSE and SARS-CoV-2 -exposed 16HBE cells. Otherwise, RIG-I, MAD5, IRF3, IFN-γ, and the MAVS expression were restored in 16HBE cells exposed to CSE and SARS-CoV-2 and treated with Lr. Lr induces antiviral signaling associated to IFN-γ secreting viral sensors and attenuates cytokine storm associated to NF-κB in bronchial epithelial cells, supporting its emerging role in prevention of COPD exacerbation.


Assuntos
COVID-19 , Fumar Cigarros , Lacticaseibacillus rhamnosus , Doença Pulmonar Obstrutiva Crônica , Humanos , SARS-CoV-2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Fumar Cigarros/efeitos adversos , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , COVID-19/metabolismo , Células Epiteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Antivirais/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
12.
Viruses ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37515134

RESUMO

The Zika virus (ZIKV) epidemic brought new discoveries regarding arboviruses, especially flaviviruses, as ZIKV was described as sexually and vertically transmitted. The latter shows severe consequences for the embryo/fetus, such as congenital microcephaly and deficiency of the neural system, currently known as Congenital ZIKV Syndrome (CZS). To better understand ZIKV dynamics in trophoblastic cells present in the first trimester of pregnancy (BeWo, HTR-8, and control cell HuH-7), an experiment of viral kinetics was performed for African MR766 low passage and Asian-Brazilian IEC ZIKV lineages. The results were described independently and demonstrated that the three placental cells lines are permissive and susceptible to ZIKV. We noticed cytopathic effects that are typical in in vitro viral infection in BeWo and HTR-8. Regarding kinetics, MR766lp showed peaks of viral loads in 24 and 48 hpi for all cell types tested, as well as marked cells death after peak production. On the other hand, the HTR-8 lineage inoculated with ZIKV-IEC exhibited increased viral production in 144 hpi, with a peak between 24 and 96 hpi. Furthermore, IEC had peak variations of viral production for BeWo in 144 hpi. Considering such in vitro results, the hypothesis that maternal fetal transmission is probably a way of virus transmission between the mother and the embryo/fetus is maintained.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Gravidez , Feminino , Placenta , Brasil , Cinética , Linhagem Celular
13.
Viruses ; 15(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37766342

RESUMO

Dengue is an infectious disease of global health concern that continues to require surveillance. Serological testing has been used to investigate dengue-infected patients, but specificity is affected by the co-circulation of ZIKA virus (ZIKV), which shares extensive antigen similarities. The goal of this study was the development of a specific dengue virus (DENV) IgG ELISA based on a multi-epitope NS1-based antigen for antibody detection. The multi-epitope protein (T-ΔNS1), derived from a fragment of the NS1-protein of the four DENV serotypes, was expressed in Escherichia coli and purified via affinity chromatography. The antigenicity and specificity were evaluated with sera of mice infected with DENV-1-4 or ZIKV or after immunization with the recombinant ΔNS1 proteins. The performance of the T-ΔNS1-based IgG ELISA was also determined with human serum samples. The results demonstrate that the DENV T-ΔNS1 was specifically recognized by the serum IgG of dengue-infected mice or humans but showed no or reduced reactivity with ZIKV-infected subjects. Based on the available set of clinical samples, the ELISA based on the DENV T-ΔNS1 achieved 77.42% sensitivity and 88.57% specificity. The results indicate that the T-ΔNS1 antigen is a promising candidate for the development of specific serological analysis.

14.
Sci Rep ; 13(1): 16821, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798298

RESUMO

Amongst the potential contribution of protein or peptide-display systems to study epitopes with relevant immunological features, the RAD display system stands out as a highly stable scaffold protein that allows the presentation of constrained target peptides. Here, we employed the RAD display system to present peptides derived from the SARS-CoV-2 Spike (S) protein as a tool to detect specific serum antibodies and to generate polyclonal antibodies capable of inhibiting SARS-CoV-2 infectivity in vitro. 44 linear S-derived peptides were genetically fused with the RAD scaffold (RAD-SCoV-epitopes) and screened for antigenicity with sera collected from COVID-19-infected patients. In a second step, selected RAD-SCoV-epitopes were used to immunize mice and generate antibodies. Phenotypic screening showed that some of these antibodies were able to recognize replicating viral particles in VERO CCL-81 and most notably seven of the RAD-SCoV-epitopes were able to induce antibodies that inhibited viral infection. Our findings highlight the RAD display system as an useful platform for the immunological characterization of peptides and a potentially valuable strategy for the design of antigens for peptide-based vaccines, for epitope-specific antibody mapping, and for the development of antibodies for diagnostic and therapeutic purposes.


Assuntos
COVID-19 , Pyrococcus furiosus , Humanos , Animais , Camundongos , Epitopos , Glicoproteína da Espícula de Coronavírus/metabolismo , Pyrococcus furiosus/metabolismo , Anticorpos Antivirais , Proteínas do Envelope Viral , SARS-CoV-2 , Peptídeos/química , Anticorpos Neutralizantes
15.
Microbiol Spectr ; 11(6): e0285723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909777

RESUMO

IMPORTANCE: Several additional COVID-19 vaccine doses were administered in the Brazilian population to prevent the disease caused by the B.1.1.529 (Omicron) variant. The efficacy of a third dose as a booster is already well described. However, it is important to clarify the humoral immune response gain induced by a fourth dose. In this study, we evaluate the effect of the fourth COVID-19 vaccine dose in a diverse Brazilian population, considering a real-life context. Our study reveals that the fourth dose of the COVID-19 vaccine increased the neutralizing antibody response against SARS-CoV-2 Omicron and significantly contributed in the reduction of the disease caused by this variant.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Brasil , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais
16.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992364

RESUMO

Zika virus (ZIKV), a mosquito-borne pathogen, is an emerging arbovirus associated with sporadic symptomatic cases of great medical concern, particularly among pregnant women and newborns affected with neurological disorders. Serological diagnosis of ZIKV infection is still an unmet challenge due to the co-circulation of the dengue virus, which shares extensive sequence conservation of structural proteins leading to the generation of cross-reactive antibodies. In this study, we aimed to obtain tools for the development of improved serological tests for the detection of ZIKV infection. Polyclonal sera (pAb) and a monoclonal antibody (mAb 2F2) against a recombinant form of the ZIKV nonstructural protein 1 (NS1) allowed the identification of linear peptide epitopes of the NS1 protein. Based on these findings, six chemically synthesized peptides were tested both in dot blot and ELISA assays using convalescent sera collected from ZIKV-infected patients. Two of these peptides specifically detected the presence of ZIKV antibodies and proved to be candidates for the detection of ZIKV-infected subjects. The availability of these tools opens perspectives for the development of NS1-based serological tests with enhanced sensitivity regarding other flaviviruses.


Assuntos
Proteínas não Estruturais Virais , Infecção por Zika virus , Feminino , Humanos , Recém-Nascido , Gravidez , Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Peptídeos , Testes Sorológicos , Proteínas não Estruturais Virais/isolamento & purificação , Zika virus
17.
Front Cell Infect Microbiol ; 12: 787411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719329

RESUMO

Reliable serological tests for the detection of SARS-CoV-2 antibodies among infected or vaccinated individuals are important for epidemiological and clinical studies. Low-cost approaches easily adaptable to high throughput screenings, such as Enzyme-Linked Immunosorbent Assays (ELISA) or electrochemiluminescence immunoassay (ECLIA), can be readily validated using different SARS-CoV-2 antigens. A total of 1,119 serum samples collected between March and July of 2020 from health employees and visitors to the University Hospital at the University of São Paulo were screened with the Elecsys® Anti-SARS-CoV-2 immunoassay (Elecsys) (Roche Diagnostics) and three in-house ELISAs that are based on different antigens: the Nucleoprotein (N-ELISA), the Receptor Binding Domain (RBD-ELISA), and a portion of the S1 protein (ΔS1-ELISA). Virus neutralization test (CPE-VNT) was used as the gold standard to validate the serological assays. We observed high sensitivity and specificity values with the Elecsys (96.92% and 98.78%, respectively) and N-ELISA (93.94% and 94.40%, respectively), compared with RBD-ELISA (90.91% sensitivity and 88.80% specificity) and the ΔS1-ELISA (77.27% sensitivity and 76% specificity). The Elecsys® proved to be a reliable SARS-CoV-2 serological test. Similarly, the recombinant SARS-CoV-2 N protein displayed good performance in the ELISA tests. The availability of reliable diagnostic tests is critical for the precise determination of infection rates, particularly in countries with high SARS-CoV-2 infection rates, such as Brazil. Collectively, our results indicate that the development and validation of new serological tests based on recombinant proteins may provide new alternatives for the SARS-CoV-2 diagnostic market.


Assuntos
COVID-19 , Anticorpos Antivirais , Brasil/epidemiologia , COVID-19/diagnóstico , Técnicas de Laboratório Clínico/métodos , Hospitais , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Sensibilidade e Especificidade
18.
Int J Infect Dis ; 112: 202-204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34555500

RESUMO

OBJECTIVES: The aim of this study was to achieve greater specificity of dengue virus (DENV) serological tests based on a recombinant antigen derived from non-structural protein 1 (ΔNS1) with regard to cross-reactive Zika virus (ZIKV) anti-NS1 antibody responses. This is of relevance in endemic regions for the serological discrimination of both DENV and ZIKV, such as Brazil and other tropical countries. METHODS: The ΔNS1 proteins were obtained as recombinant antigens and were evaluated as solid-phase-bound antigens in the ELISA test to detect anti-NS1 IgG antibodies. The performance of the ∆NS1-based DENV IgG ELISA was assessed with both mouse and human serum samples previously exposed to DENV or ZIKV. RESULTS: The ∆NS1-based DENV IgG ELISA detected anti-DENV NS1 IgG without cross-reactivity with ZIKV-positive serum samples. The sensitivity and specificity of the assay determined using samples previously characterized by real-time PCR (qRT-PCR) or plaque reduction neutralization assay (PRNT) were 82% and 93%, respectively. CONCLUSION: The ∆NS1-based DENV IgG ELISA conferred enhanced diagnostic specificity for anti-DENV serological tests and may be particularly useful for serological analyses in endemic regions for both DENV and ZIKV transmission.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Anticorpos Antivirais , Dengue/diagnóstico , Ensaio de Imunoadsorção Enzimática , Camundongos , Sensibilidade e Especificidade , Proteínas não Estruturais Virais , Infecção por Zika virus/diagnóstico
19.
PLoS Negl Trop Dis ; 15(7): e0009612, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329305

RESUMO

This study aims to describe the sociodemographic determinants associated with exposure to Zika Virus (ZIKV) in pregnant women during the 2015-2016 epidemic in Salvador, Brazil. METHODS: We recruited women who gave birth between October 2015 and January 2016 to a cross-sectional study at a referral maternity hospital in Salvador, Brazil. We collected information on their demographic, socioeconomic, and clinical characteristics, and evaluated their ZIKV exposure using a plaque reduction neutralization test. Logistic regression was then used to assess the relationship between these social determinants and ZIKV exposure status. RESULTS: We included 469 pregnant women, of whom 61% had a positive ZIKV result. Multivariate analysis found that lower education (adjusted Prevalence Rate [aPR] 1.21; 95%CI 1.04-1.35) and food insecurity (aPR 1.17; 95%CI 1.01-1.30) were positively associated with ZIKV exposure. Additionally, age was negatively associated with the infection risk (aPR 0.99; 95%CI 0.97-0.998). CONCLUSION: Eve after controlling for age, differences in key social determinants, as education and food security, were associated with the risk of ZIKV infection among pregnant women in Brazil. Our findings elucidate risk factors that can be targeted by future interventions to reduce the impact of ZIKV infection in this vulnerable population.


Assuntos
Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/virologia , Fatores Socioeconômicos , Infecção por Zika virus/economia , Infecção por Zika virus/epidemiologia , Adulto , Brasil/epidemiologia , Estudos Transversais , Feminino , Humanos , Gravidez , Complicações Infecciosas na Gravidez/economia , Fatores de Risco
20.
Int J Infect Dis ; 95: 276-278, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32289563

RESUMO

OBJECTIVES: This study was performed to determine whether Dengue virus (DENV) immunochromatographic tests can detect and differentiate nonstructural protein 1 (NS1) from each of the four DENV serotypes and do not cross-react with the Zika virus (ZIKV) NS1 protein. METHODS: We compared the specificity of six NS1-based DENV immunochromatographic tests (point of care) in the detection of NS1 proteins from each of the four DENV serotypes and ZIKV. The tests were performed with NS1 proteins produced in mammalian cells. Cross-reactivity was confirmed with a purified recombinant ZIKV NS1 protein and DENV+ or ZIKV+ human serum samples. RESULTS: Cross-reaction was observed in 2 out of the 6 evaluated tests using cell culture supernatants containing NS1 protein of each tested virus. Cross-reactivity with ZIKV was confirmed with purified recombinant ZIKV NS1 produced in Escherichia coli. Further analyses with serum samples collected from DENV+ or ZIKV+ patients confirmed the cross-reactivity with ZIKV protein in 2 tests. CONCLUSIONS: The detection of the NS1 protein is the basis for several commercially available serological DENV diagnostic tests. The present results emphasize the relevance of testing specificity of presently available NS1-based DENV serological tests and the need of adjustments of tests that cross-react with the ZIKV protein. Our results are particularly relevant for regions where both viruses are endemically found, as in the case of Brazil.


Assuntos
Cromatografia de Afinidade/métodos , Vírus da Dengue/imunologia , Dengue/virologia , Proteínas não Estruturais Virais/imunologia , Zika virus/imunologia , Anticorpos Antivirais/sangue , Brasil , Reações Cruzadas , Vírus da Dengue/isolamento & purificação , Glicoproteínas/imunologia , Humanos , Sensibilidade e Especificidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA