Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38749704

RESUMO

General anesthetics disrupt brain network dynamics through multiple pathways, in part through postsynaptic potentiation of inhibitory ion channels as well as presynaptic inhibition of neuroexocytosis. Common clinical general anesthetic drugs, such as propofol and isoflurane, have been shown to interact and interfere with core components of the exocytic release machinery to cause impaired neurotransmitter release. Recent studies however suggest that these drugs do not affect all synapse subtypes equally. We investigated the role of the presynaptic release machinery in multiple neurotransmitter systems under isoflurane general anesthesia in the adult female Drosophila brain using live-cell super-resolution microscopy and optogenetic readouts of exocytosis and neural excitability. We activated neurotransmitter-specific mushroom body output neurons and imaged presynaptic function under isoflurane anesthesia. We found that isoflurane impaired synaptic release and presynaptic protein dynamics in excitatory cholinergic synapses. In contrast, isoflurane had little to no effect on inhibitory GABAergic or glutamatergic synapses. These results present a distinct inhibitory mechanism for general anesthesia, whereby neuroexocytosis is selectively impaired at excitatory synapses, while inhibitory synapses remain functional. This suggests a presynaptic inhibitory mechanism that complements the other inhibitory effects of these drugs.


Assuntos
Encéfalo , Proteínas de Drosophila , Isoflurano , Proteínas SNARE , Sinapses , Animais , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia , Feminino , Proteínas SNARE/metabolismo , Isoflurano/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila , Anestésicos Inalatórios/farmacologia , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/metabolismo , Corpos Pedunculados/fisiologia
2.
Trends Genet ; 38(4): 325-332, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34920906

RESUMO

N6-methyladenosine or m6A modification to mRNAs is now recognised as a key regulator of gene expression and protein translation. The fate of m6A-modified mRNAs is decoded by m6A readers, mostly found in the cytoplasm, except for the nuclear-localised YTHDC1. While earlier studies have implicated YTHDC1-m6A functions in alternative splicing and mRNA export, recent literature has expanded its close association to the chromatin-associated, noncoding and regulatory RNAs to fine-tune transcription and gene expression in cells. Here, we summarise current progress in the study of YTHDC1 function in cells, highlighting its multiple modes of action in regulating gene expression, and propose the formation of YTHDC1 nuclear condensates as a general mechanism that underlies its diverse functions in the nucleus.


Assuntos
Adenosina , Núcleo Celular , Transporte Ativo do Núcleo Celular/genética , Adenosina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Proteomics ; 24(7): e2300276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115172

RESUMO

Understanding the molecular changes associated with the aged brain forms the basis for developing potential strategies for slowing cognitive decline associated with normal aging. Focusing on the hippocampus, a critical brain region involved in learning and memory, we employed tandem mass tag methodology to investigate global proteomic changes that occur in advanced-aged (20-month) versus young (3-month) C57BL/6 male mice. Our analysis revealed the upregulation of 236 proteins in the old hippocampal proteome, including those enriched within several age-related processes, such as the adaptive immune response and molecular metabolic pathways, whereas downregulated proteins (88 in total) are mainly involved in axonogenesis and growth cone-related processes. Categorizing proteins by cell-type enrichment in the brain identified a general upregulation of proteins preferentially expressed in microglia, astrocytes, and oligodendrocytes. In contrast, proteins with neuron-specific expression displayed an overall age-related downregulation. By integrating our proteomic with our previously published transcriptomic data, we discovered a mild but significant positive correlation between mRNA and protein expression changes in the aged hippocampus. Therefore, this proteomic data is a valuable additional resource for further understanding age-related molecular mechanisms.


Assuntos
Encéfalo , Proteômica , Camundongos , Animais , Masculino , Proteômica/métodos , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Microglia , Hipocampo/metabolismo , Proteoma/metabolismo
4.
J Neurosci ; 43(30): 5448-5457, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37419688

RESUMO

Activity-dependent changes in the number of AMPA-type glutamate receptors (AMPARs) at the synapse underpin the expression of LTP and LTD, cellular correlates of learning and memory. Post-translational ubiquitination has emerged as a key regulator of the trafficking and surface expression of AMPARs, with ubiquitination of the GluA1 subunit at Lys-868 controlling the post-endocytic sorting of the receptors into the late endosome for degradation, thereby regulating their stability at synapses. However, the physiological significance of GluA1 ubiquitination remains unknown. In this study, we generated mice with a knock-in mutation in the major GluA1 ubiquitination site (K868R) to investigate the role of GluA1 ubiquitination in synaptic plasticity, learning, and memory. Our results reveal that these male mice have normal basal synaptic transmission but exhibit enhanced LTP and deficits in LTD. They also display deficits in short-term spatial memory and cognitive flexibility. These findings underscore the critical roles of GluA1 ubiquitination in bidirectional synaptic plasticity and cognition in male mice.SIGNIFICANCE STATEMENT Subcellular targeting and membrane trafficking determine the precise number of AMPA-type glutamate receptors at synapses, processes that are essential for synaptic plasticity, learning, and memory. Post-translational ubiquitination of the GluA1 subunit marks AMPARs for degradation, but its functional role in vivo remains unknown. Here we demonstrate that the GluA1 ubiquitin-deficient mice exhibit an altered threshold for synaptic plasticity accompanied by deficits in short-term memory and cognitive flexibility. Our findings suggest that activity-dependent ubiquitination of GluA1 fine-tunes the optimal number of synaptic AMPARs required for bidirectional synaptic plasticity and cognition in male mice. Given that increases in amyloid-ß cause excessive ubiquitination of GluA1, inhibiting that GluA1 ubiquitination may have the potential to ameliorate amyloid-ß-induced synaptic depression in Alzheimer's disease.


Assuntos
Plasticidade Neuronal , Receptores de AMPA , Camundongos , Masculino , Animais , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Receptores de Glutamato/metabolismo , Ubiquitinação , Cognição , Hipocampo/metabolismo
5.
Semin Cell Dev Biol ; 125: 110-121, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34053866

RESUMO

Activity-dependent gene expression and protein translation underlie the ability of neurons to dynamically adjust their synaptic strength in response to sensory experience and during learning. The emerging field of epitranscriptomics (RNA modifications) has rapidly shifted our views on the mechanisms that regulate gene expression. Among hundreds of biochemical modifications on RNA, N6-methyladenosine (m6A) is the most abundant reversible mRNA modification in the brain. Its dynamic nature and ability to regulate all aspects of mRNA processing have positioned m6A as an important and versatile regulator of nervous system functions, including neuronal plasticity, learning and memory. In this review, we summarise recent experimental evidence that supports the role of m6A signalling in learning and memory, as well as providing an overview of the underlying molecular mechanisms in neurons. We also discuss the consequences of perturbed m6A signalling and/or its regulatory networks which are increasingly being linked to various cognitive disorders in humans.


Assuntos
Aprendizagem , Plasticidade Neuronal , Encéfalo/fisiologia , Humanos , Plasticidade Neuronal/genética , Neurônios/metabolismo , RNA/metabolismo
6.
J Neurochem ; 165(4): 563-586, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36847488

RESUMO

Progressive supranuclear palsy (PSP) is a late-onset neurodegenerative disease defined pathologically by the presence of insoluble phosphorylated-Tau (p-Tau) in neurons and glia. Identifying co-aggregating proteins within p-Tau inclusions may reveal important insights into processes affected by the aggregation of Tau. We used a proteomic approach, which combines antibody-mediated biotinylation and mass spectrometry (MS) to identify proteins proximal to p-Tau in PSP. Using this proof-of-concept workflow for identifying interacting proteins of interest, we characterized proteins proximal to p-Tau in PSP cases, identifying >84% of previously identified interaction partners of Tau and known modifiers of Tau aggregation, while 19 novel proteins not previously found associated with Tau were identified. Furthermore, our data also identified confidently assigned phosphorylation sites that have been previously reported on p-Tau. Additionally, using ingenuity pathway analysis (IPA) and human RNA-seq datasets, we identified proteins previously associated with neurological disorders and pathways involved in protein degradation, stress responses, cytoskeletal dynamics, metabolism, and neurotransmission. Together, our study demonstrates the utility of biotinylation by antibody recognition (BAR) approach to answer a fundamental question to rapidly identify proteins in proximity to p-Tau from post-mortem tissue. The application of this workflow opens up the opportunity to identify novel protein targets to give us insight into the biological process at the onset and progression of tauopathies.


Assuntos
Doenças Neurodegenerativas , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Proteínas tau/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Proteólise , Proteômica , Tauopatias/metabolismo , Transmissão Sináptica
7.
Epilepsia ; 64(12): 3377-3388, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37734923

RESUMO

OBJECTIVE: N-methyl-d-aspartate (NMDA) receptors are expressed at synaptic sites, where they mediate fast excitatory neurotransmission. NMDA receptors are critical to brain development and cognitive function. Natural variants to the GRIN1 gene, which encodes the obligatory GluN1 subunit of the NMDA receptor, are associated with severe neurological disorders that include epilepsy, intellectual disability, and developmental delay. Here, we investigated the pathogenicity of three missense variants to the GRIN1 gene, p. Ile148Val (GluN1-3b[I481V]), p.Ala666Ser (GluN1-3b[A666S]), and p.Tyr668His (GluN1-3b[Y668H]). METHODS: Wild-type and variant-containing NMDA receptors were expressed in HEK293 cells and primary hippocampal neurons. Patch-clamp electrophysiology and pharmacology were used to profile the functional properties of the receptors. Receptor surface expression was evaluated using fluorescently tagged receptors and microscopy. RESULTS: Our data demonstrate that the GluN1(I481V) variant is inhibited by the open pore blockers ketamine and memantine with reduce potency but otherwise has little effect on receptor function. By contrast, the other two variants exhibit gain-of-function molecular phenotypes. Glycine sensitivity was enhanced in receptors containing the GluN1(A666S) variant and the potency of pore block by memantine and ketamine was reduced, whereas that for MK-801 was increased. The most pronounced functional deficits, however, were found in receptors containing the GluN1(Y668H) variant. GluN1(Y668H)/2A receptors showed impaired surface expression, were more sensitive to glycine and glutamate by an order of magnitude, and exhibited impaired block by extracellular magnesium ions, memantine, ketamine, and MK-801. These variant receptors were also activated by either glutamate or glycine alone. Single-receptor recordings revealed that this receptor variant opened to several conductance levels and activated more frequently than wild-type GluN1/2A receptors. SIGNIFICANCE: Our study reveals a critical functional locus of the receptor (GluN1[Y668]) that couples receptor gating to ion channel conductance, which when mutated may be associated with neurological disorder.


Assuntos
Ketamina , Transtornos do Neurodesenvolvimento , Humanos , Memantina/farmacologia , Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Células HEK293 , Glutamatos , Transtornos do Neurodesenvolvimento/genética , Glicina , Proteínas do Tecido Nervoso/metabolismo
8.
Nucleic Acids Res ; 48(6): 3356-3365, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32034402

RESUMO

SFPQ is a ubiquitous nuclear RNA-binding protein implicated in many aspects of RNA biogenesis. Importantly, nuclear depletion and cytoplasmic accumulation of SFPQ has been linked to neuropathological conditions such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Here, we describe a molecular mechanism by which SFPQ is mislocalized to the cytoplasm. We report an unexpected discovery of the infinite polymerization of SFPQ that is induced by zinc binding to the protein. The crystal structure of human SFPQ in complex with zinc at 1.94 Å resolution reveals intermolecular interactions between SFPQ molecules that are mediated by zinc. As anticipated from the crystal structure, the application of zinc to primary cortical neurons induced the cytoplasmic accumulation and aggregation of SFPQ. Mutagenesis of the three zinc-coordinating histidine residues resulted in a significant reduction in the zinc-binding affinity of SFPQ in solution and the zinc-induced cytoplasmic aggregation of SFPQ in cultured neurons. Taken together, we propose that dysregulation of zinc availability and/or localization in neuronal cells may represent a mechanism for the imbalance in the nucleocytoplasmic distribution of SFPQ, which is an emerging hallmark of neurodegenerative diseases including AD and ALS.


Assuntos
Neurônios/metabolismo , Fator de Processamento Associado a PTB/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , RNA/genética , Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Núcleo Celular/genética , Cristalografia por Raios X , Citoplasma/genética , Humanos , Neurônios/patologia , Fator de Processamento Associado a PTB/química , Fator de Processamento Associado a PTB/genética , Polimerização , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Zinco/metabolismo
9.
J Neurochem ; 154(2): 121-143, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31978252

RESUMO

The N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate the flux of calcium (Ca2+ ) into the post-synaptic compartment. Ca2+ influx subsequently triggers the activation of various intracellular signalling cascades that underpin multiple forms of synaptic plasticity. Functional NMDARs are assembled as heterotetramers composed of two obligatory GluN1 subunits and two GluN2 or GluN3 subunits. Four different GluN2 subunits (GluN2A-D) are present throughout the central nervous system; however, they are differentially expressed, both developmentally and spatially, in a cell- and synapse-specific manner. Each GluN2 subunit confers NMDARs with distinct ion channel properties and intracellular trafficking pathways. Regulated membrane trafficking of NMDARs is a dynamic process that ultimately determines the number of NMDARs at synapses, and is controlled by subunit-specific interactions with various intracellular regulatory proteins. Here we review recent progress made towards understanding the molecular mechanisms that regulate the trafficking of GluN2-containing NMDARs, focusing on the roles of several key synaptic proteins that interact with NMDARs via their carboxyl termini.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Humanos , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia
10.
Cell Mol Neurobiol ; 40(7): 1213-1222, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32052226

RESUMO

Excitatory neurotransmission relies on the precise targeting of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors to the neuronal plasma membrane. Activity-dependent ubiquitination of AMPA receptor (AMPAR) subunits sorts internalised receptors to late endosomes for degradation, which ultimately determines the number of AMPARs on neuronal membrane. Our recent study has demonstrated a functional cross-talk between the phosphorylation and ubiquitination of the GluA1 subunit in mammalian central neurons. However, the existence of such a cross modulation for the GluA2 subunit remains unknown. Here, we have shown that bicuculline induced GluA2 ubiquitination on the same lysine residues (Lys-870 and Lys-882) in the C-terminal as those elicited by the AMPA treatment. Interestingly, bicuculline-induced ubiquitination was markedly enhanced by the phospho-mimetic GluA2 S880E mutant. Pharmacological activation of protein kinase C (PKC) by phorbol ester, which mediates the phosphorylation of GluA2 at Ser-880, augmented bicuculline-induced ubiquitination of GluA2 in cultured neurons. This effect was specific for the GluA2 subunit because phorbol ester did not alter the level of GluA1 ubiquitination. However, phorbol ester-induced enhancement of GluA2 ubiquitination did not require Ser-880 phosphorylation. This suggests that pseudo-phosphorylation of Ser-880 is sufficient but is not necessary for the augmentation of bicuculline-induced GluA2 ubiquitination. Collectively, these data provide the first demonstration of subunit-specific modulation of AMPAR ubiquitination by the PKC-dependent signalling pathway in mammalian central neurons.


Assuntos
Ésteres de Forbol/farmacologia , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Ubiquitinação/efeitos dos fármacos , Animais , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ésteres de Forbol/metabolismo , Ratos , Transmissão Sináptica/efeitos dos fármacos
11.
Cereb Cortex ; 29(8): 3590-3604, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30272140

RESUMO

Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular-subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain.


Assuntos
Movimento Celular/genética , Giro Denteado/citologia , Ventrículos Laterais/citologia , Fatores de Transcrição NFI/genética , Células-Tronco Neurais/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Camundongos , Células-Tronco Neurais/citologia , Neurogênese/genética , Receptores do Fator Natriurético Atrial/genética
12.
Semin Cell Dev Biol ; 125: 66-67, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35135720
13.
Anesthesiology ; 131(3): 555-568, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356232

RESUMO

BACKGROUND: Mutations in the presynaptic protein syntaxin1A modulate general anesthetic effects in vitro and in vivo. Coexpression of a truncated syntaxin1A protein confers resistance to volatile and intravenous anesthetics, suggesting a target mechanism distinct from postsynaptic inhibitory receptor processes. Hypothesizing that recovery from anesthesia may involve a presynaptic component, the authors tested whether syntaxin1A mutations facilitated recovery from isoflurane anesthesia in Drosophila melanogaster. METHODS: A truncated syntaxin1A construct was expressed in Drosophila neurons. The authors compared effects on isoflurane induction versus recovery in syntaxin1A mutant animals by probing behavioral responses to mechanical stimuli. The authors also measured synaptic responses from the larval neuromuscular junction using sharp intracellular recordings, and performed Western blots to determine whether the truncated syntaxin1A is associated with presynaptic core complexes. RESULTS: Drosophila expressing a truncated syntaxin1A (syx, n = 40) were resistant to isoflurane induction for a behavioral responsiveness endpoint (ED50 0.30 ± 0.01% isoflurane, P < 0.001) compared with control (0.240 ± 0.002% isoflurane, n = 40). Recovery from isoflurane anesthesia was also faster, with syx-expressing flies showing greater levels of responsiveness earlier in recovery (reaction proportion 0.66 ± 0.48, P < 0.001, n = 68) than controls (0.22 ± 0.42, n = 68 and 0.33 ± 0.48, n = 66). Measuring excitatory junction potentials of larvae coexpressing the truncated syntaxin1A protein showed a greater recovery of synaptic function, compared with controls (17.39 ± 3.19 mV and 10.29 ± 4.88 mV, P = 0.014, n = 8 for both). The resistance-promoting truncated syntaxin1A was not associated with presynaptic core complexes, in the presence or absence of isoflurane anesthesia. CONCLUSIONS: The same neomorphic syntaxin1A mutation that confers isoflurane resistance in cell culture and nematodes also produces isoflurane resistance in Drosophila. Resistance in Drosophila is, however, most evident at the level of recovery from anesthesia, suggesting that the syntaxin1A target affects anesthesia maintenance and recovery processes rather than induction. The absence of truncated syntaxin1A from the presynaptic complex suggests that the resistance-promoting effect of this molecule occurs before core complex formation.


Assuntos
Anestésicos Inalatórios/farmacologia , Proteínas de Drosophila/genética , Isoflurano/farmacologia , Mutação/genética , Junção Neuromuscular/efeitos dos fármacos , Proteínas Qa-SNARE/genética , Período de Recuperação da Anestesia , Animais , Drosophila melanogaster , Feminino
14.
J Biol Chem ; 292(20): 8186-8194, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28377502

RESUMO

The accumulation of soluble amyloid-ß (Aß) peptides produces profound neuronal changes in the brain during the pathogenesis of Alzheimer's disease. Excessive levels of Aß disrupt excitatory synaptic transmission by promoting the removal of synaptic AMPA receptors (AMPARs), dendritic spine loss, and synaptic depression. Recently, activity-dependent ubiquitination of the GluA1 subunit has been shown to regulate the intracellular sorting of AMPARs toward late endosomes for degradation. However, whether this ubiquitin signaling pathway mediates Aß-induced loss of surface AMPARs is unknown. In this study, we demonstrate that acute exposure of cultured neurons to soluble Aß oligomers induces AMPAR ubiquitination concomitant with the removal of AMPARs from the plasma membrane. Importantly, expression of the GluA1 ubiquitin-deficient mutants inhibited the adverse effects of Aß on the surface expression of AMPARs in neurons. Furthermore, we revealed the cross-talk between GluA1 ubiquitination and phosphorylation, in particular phosphorylation at Ser-845, which is crucial for AMPAR recycling and is known to be dephosphorylated in the presence of Aß. Our data showed that the GluA1 ubiquitin-deficient mutant enhances GluA1 phosphorylation on Ser-845. Conversely, the GluA1 S845D phosphomimetic mutant reduced binding with Nedd4-1 and hence the ubiquitination of AMPARs. Importantly, the GluA1 S845D mutant also prevented Aß-induced removal of surface AMPARs. Taken together, these findings provide the first demonstration of the dynamic cross-modulation of GluA1 ubiquitination and phosphorylation, a process that is perturbed by Aß, in regulating the membrane sorting decision that ultimately determines the number of AMPARs on the cell surface.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de AMPA/metabolismo , Ubiquitinação , Substituição de Aminoácidos , Peptídeos beta-Amiloides/genética , Animais , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4 , Fragmentos de Peptídeos/genética , Fosforilação , Ratos , Receptores de AMPA/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
J Neurochem ; 147(2): 137-152, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29873074

RESUMO

Research over the past decade has provided strong support for the importance of various epigenetic mechanisms, including DNA and histone modifications in regulating activity-dependent gene expression in the mammalian central nervous system. More recently, the emerging field of epitranscriptomics revealed an equally important role of post-transcriptional RNA modifications in shaping the transcriptomic landscape of the brain. This review will focus on the methylation of the adenosine base at the N6 position, termed N6 methyladenosine (m6A), which is the most abundant internal modification that decorates eukaryotic messenger RNAs. Given its prevalence and dynamic regulation in the adult brain, the m6A-epitranscriptome provides an additional layer of regulation on RNA that can be controlled in a context- and stimulus-dependent manner. Conceptually, m6A serves as a molecular switch that regulates various aspects of RNA function, including splicing, stability, localization, or translational control. The versatility of m6A function is typically determined through interaction or disengagement with specific classes of m6A-interacting proteins. Here we review recent advances in the field and provide insights into the roles of m6A in regulating brain function, from development to synaptic plasticity, learning, and memory. We also discuss how aberrant m6A signaling may contribute to neurodevelopmental and neuropsychiatric disorders.


Assuntos
Adenosina/análogos & derivados , Encéfalo/crescimento & desenvolvimento , Epigenômica , Neurobiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Adenosina/genética , Adenosina/fisiologia , Animais , Humanos , Processamento de Proteína Pós-Traducional
16.
J Neurosci ; 36(25): 6771-7, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27335407

RESUMO

UNLABELLED: The RNA modification N(6)-methyladenosine (m(6)A) influences mRNA stability and cell-type-specific developmental programming, and is highly abundant in the adult brain. However, it has not been determined whether m(6)A is dynamically regulated by experience. Based on transcriptome-wide profiling of m(6)A, we report that the level of m(6)A increases in the medial prefrontal cortex (mPFC) of mice in response to behavioral experience. The modulation was enriched near the stop codon of mRNAs, including genes related to neuronal plasticity. In primary cortical neurons, in vitro, modulation of m(6)A by the RNA demethylase FTO influenced the degradation profiles of a subset of transcripts with modulated sites. In vivo, the expression of Fto and the m(6)A methyltransferase, Mettl3 correlated with the observed increase in m(6)A levels post-training. Furthermore, targeted knockdown of FTO in the mPFC led to enhanced consolidation of cued fear memory. Thus, together with its role in early development, the dynamic regulation of m(6)A in the adult brain serves as an important epitranscriptomic mechanism associated with behavioral adaptation. SIGNIFICANCE STATEMENT: N(6)-methyladenosine (m(6)A) is the most prevalent internal modification on RNA, however, its cellular dynamics in vivo remains elusive. Here we provide the first demonstration of m(6)A upregulation in the mouse medial prefrontal cortex (mPFC) following behavioral training. Knocking down the m(6)A demethylase FTO in the mPFC, which increases total m(6)A level, results in enhanced consolidation of fear memory. Our findings suggest that m(6)A is regulated in an activity-dependent manner in the adult brain, and may function to fine-tune mRNA turnover during memory-related processes.


Assuntos
Adenosina/análogos & derivados , Memória/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Adenosina/genética , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Células Cultivadas , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Embrião de Mamíferos , Comportamento Exploratório/fisiologia , Medo/fisiologia , Perfilação da Expressão Gênica , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteólise , RNA Interferente Pequeno/genética
17.
Proc Natl Acad Sci U S A ; 111(32): 11840-5, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071192

RESUMO

Activity-dependent changes in synaptic strength have long been postulated as cellular correlates of learning and memory. Long-term potentiation (LTP), a well characterized form of synaptic plasticity, is often expressed as an increase in the number of postsynaptic AMPA-type glutamate receptors (AMPARs). Although the precise molecular mechanisms governing LTP remain elusive, this study identifies one member of the sorting nexin family, Sorting Nexin 27 (SNX27), as a critical component in this process. The ability of sorting nexins to bind specific phospholipids as well as their propensity to form protein-protein complexes, points to a role for these proteins in membrane trafficking and protein sorting. Here, we demonstrate that SNX27 binds to AMPARs, and that this interaction is regulated in an activity-dependent manner. Furthermore, we provide evidence that SNX27 is synaptically enriched and its level of expression regulates targeting of AMPARs to the neuronal surface. Loss of SNX27 abolishes recruitment of surface AMPARs during chemical LTP. Collectively, our data suggest a role for SNX27 in modulating synaptic plasticity through regulated interaction with AMPARs.


Assuntos
Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Animais , Encéfalo/metabolismo , Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Domínios PDZ , Densidade Pós-Sináptica/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/química
18.
Proc Natl Acad Sci U S A ; 110(35): 14426-31, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940334

RESUMO

NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling. Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluorescence in response to NMDA and AMPA primarily describes an intracellular acidification, which quenches the pHluorin signal from intracellular receptor pools. Neurons expressing an endoplasmic reticulum-retained mutant of GluA2 (pH-GluA2 ΔC49) displayed a larger response to NMDA than neurons expressing wild-type pH-GluA2. A similar NMDA-elicited decline in pHluorin signal was observed by expressing cytosolic pHluorin alone without fusion to GluA2 (cyto-pHluorin). Intracellular acidification in response to NMDA was further confirmed by using the ratiometric pH indicator carboxy-SNARF-1. The NMDA-induced decline was followed by rapid recovery of the fluorescent signal from both cyto-pHluorin and pH-GluA2. The recovery was sodium-dependent and sensitive to Na(+)/H(+)-exchanger (NHE) inhibitors. Moreover, recovery was more rapid after shRNA-mediated knockdown of the GluA2 binding PDZ domain-containing protein interacting with C kinase 1 (PICK1). Interestingly, the accelerating effect of PICK1 knockdown on the fluorescence recovery was eliminated in the presence of the NHE1 inhibitor zoniporide. Our results indicate that the pH-GluA2 recycling assay is an unreliable assay for studying AMPA receptor trafficking and also suggest a role for PICK1 in regulating intracellular pH via modulation of NHE activity.


Assuntos
Acidose/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Trombina/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(34): 13976-81, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918399

RESUMO

The dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses is crucial for synaptic transmission, plasticity, learning, and memory. The protein interacting with C-kinase 1 (PICK1) directly interacts with GluA2/3 subunits of the AMPARs. Although the role of PICK1 in regulating AMPAR trafficking and multiple forms of synaptic plasticity is known, the exact molecular mechanisms underlying this process remain unclear. Here, we report a unique interaction between PICK1 and all three members of the protein kinase C and casein kinase II substrate in neurons (PACSIN) family and show that they form a complex with AMPARs. Our results reveal that knockdown of the neuronal-specific protein, PACSIN1, leads to a significant reduction in AMPAR internalization following the activation of NMDA receptors in hippocampal neurons. The interaction between PICK1 and PACSIN1 is regulated by PACSIN1 phosphorylation within the variable region and is required for AMPAR endocytosis. Similarly, the binding of PICK1 to the ubiquitously expressed PACSIN2 is also regulated by the homologous phosphorylation sites within the PACSIN2-variable region. Genetic deletion of PACSIN2, which is highly expressed in Purkinje cells, eliminates cerebellar long-term depression. This deficit can be fully rescued by overexpressing wild-type PACSIN2, but not by a PACSIN2 phosphomimetic mutant, which does not bind PICK1 efficiently. Taken together, our data demonstrate that the interaction of PICK1 and PACSIN is required for the activity-dependent internalization of AMPARs and for the expression of long-term depression in the cerebellum.


Assuntos
Proteínas de Transporte/metabolismo , Hipocampo/citologia , Proteínas Nucleares/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Proteínas do Citoesqueleto , Escherichia coli , Células HEK293 , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Imunoprecipitação , RNA Interferente Pequeno/genética , Ratos
20.
Neural Plast ; 2016: 3204519, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073700

RESUMO

Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aß) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aß levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aß-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aß.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Humanos , Neurônios/patologia , Transporte Proteico , Sinapses/metabolismo , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA