Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791543

RESUMO

Doublecortin, encoded by the DCX gene, plays a crucial role in the neuronal migration process during brain development. Pathogenic variants of the DCX gene are the major causes of the "lissencephaly (LIS) spectrum", which comprehends a milder phenotype like Subcortical Band Heterotopia (SBH) in heterozygous female subjects. We performed targeted sequencing in three unrelated female cases with SBH. We identified three DCX-related variants: a novel missense (c.601A>G: p.Lys201Glu), a novel nonsense (c.210C>G: p.Tyr70*), and a previously identified nonsense (c.907C>T: p.Arg303*) variant. The novel c.601A>G: p.Lys201Glu variant shows a mother-daughter transmission pattern across four generations. The proband exhibits focal epilepsy and achieved seizure freedom with a combination of oxcarbazepine and levetiracetam. All other affected members have no history of epileptic seizures. Brain MRIs of the affected members shows predominant fronto-central SBH with mixed pachygyria on the overlying cortex. The two nonsense variants were identified in two unrelated probands with SBH, severe drug-resistant epilepsy and intellectual disability. These novel DCX variants further expand the genotypic-phenotypic correlations of lissencephaly spectrum disorders. Our documented phenotypic descriptions of three unrelated families provide valuable insights and stimulate further discussions on DCX-SBH cases.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteínas Associadas aos Microtúbulos , Linhagem , Fenótipo , Humanos , Feminino , Proteínas Associadas aos Microtúbulos/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/patologia , Neuropeptídeos/genética , Códon sem Sentido/genética , Adulto , Mutação de Sentido Incorreto , Criança , Imageamento por Ressonância Magnética , Pré-Escolar , Adolescente
2.
Mov Disord ; 38(2): 286-303, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692014

RESUMO

BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. OBJECTIVE: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. METHODS: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. RESULTS: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. CONCLUSIONS: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Mutação
3.
Neurol Sci ; 44(4): 1393-1399, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36481973

RESUMO

BACKGROUND: Hereditary cranial hyperostosis is a rare disease never described in Italy, so the neurological manifestations in patients and carriers of the disease have been little studied. METHODS: We describe the neurological and neuroimaging features of patients and carriers of the gene from a large Italian family with sclerosteosis. RESULTS: In this family, genetic testing detected the homozygous p.Gln24X (c.70C > T) mutation of the SOST gene in the proband and a heterozygous mutation in 9 siblings. In homozygous adults, severe craniofacial hyperostosis was manifested by cranial neuropathy in childhood, chronic headache secondary to intracranial hypertension, and an obstructive sleep apnea syndrome in adults. In one of the adult patients, there was a compressible subcutaneous swelling in the occipital region caused by transosseous intracranial-extracranial occipital venous drainage, a compensation mechanism of obstructed venous drainage secondary to cranial hyperostosis. Mild cranial hyperostosis causing frequent headache and snoring was evident in the nine heterozygous subjects. CONCLUSIONS: Multiple cranial neuropathies and headache in children, while severe chronic headache and sleep disturbances in adults, are the neurological manifestations of the first Italian family with osteosclerosis. It is reasonable to extend neurological and neuroimaging evaluation to gene carriers as well.


Assuntos
Hiperostose , Osteosclerose , Adulto , Criança , Humanos , Proteínas Morfogenéticas Ósseas/genética , Marcadores Genéticos , Hiperostose/complicações , Hiperostose/diagnóstico por imagem , Hiperostose/genética , Osteosclerose/diagnóstico por imagem , Osteosclerose/genética , Cefaleia
4.
Mov Disord ; 37(4): 857-864, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997937

RESUMO

BACKGROUND: Previous prospective studies highlighted dairy intake as a risk factor for Parkinson's disease (PD), particularly in men. It is unclear whether this association is causal or explained by reverse causation or confounding. OBJECTIVE: The aim is to examine the association between genetically predicted dairy intake and PD using two-sample Mendelian randomization (MR). METHODS: We genotyped a well-established instrumental variable for dairy intake located in the lactase gene (rs4988235) within the Courage-PD consortium (23 studies; 9823 patients and 8376 controls of European ancestry). RESULTS: Based on a dominant model, there was an association between genetic predisposition toward higher dairy intake and PD (odds ratio [OR] per one serving per day = 1.70, 95% confidence interval = 1.12-2.60, P = 0.013) that was restricted to men (OR = 2.50 [1.37-4.56], P = 0.003; P-difference with women = 0.029). CONCLUSIONS: Using MR, our findings provide further support for a causal relationship between dairy intake and higher PD risk, not biased by confounding or reverse causation. Further studies are needed to elucidate the underlying mechanisms. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Laticínios/efeitos adversos , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
5.
Mov Disord ; 37(9): 1929-1937, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810454

RESUMO

BACKGROUND: Two studies that examined the interaction between HLA-DRB1 and smoking in Parkinson's disease (PD) yielded findings in opposite directions. OBJECTIVE: To perform a large-scale independent replication of the HLA-DRB1 × smoking interaction. METHODS: We genotyped 182 single nucleotide polymorphism (SNPs) associated with smoking initiation in 12 424 cases and 9480 controls to perform a Mendelian randomization (MR) analysis in strata defined by HLA-DRB1. RESULTS: At the amino acid level, a valine at position 11 (V11) in HLA-DRB1 displayed the strongest association with PD. MR showed an inverse association between genetically predicted smoking initiation and PD only in absence of V11 (odds ratio, 0.74, 95% confidence interval, 0.59-0.93, PInteraction  = 0.028). In silico predictions of the influence of V11 and smoking-induced modifications of α-synuclein on binding affinity showed findings consistent with this interaction pattern. CONCLUSIONS: Despite being one of the most robust findings in PD research, the mechanisms underlying the inverse association between smoking and PD remain unknown. Our findings may help better understand this association. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Predisposição Genética para Doença , Cadeias HLA-DRB1/genética , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Fumar/genética
6.
Neurol Sci ; 43(3): 1791-1797, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34559338

RESUMO

OBJECTIVE: Structural abnormalities in thalami and basal ganglia, in particular the globus pallidus (GP), are a neuroimaging hallmark of hereditary aceruloplasminemia (HA), yet few functional imaging data exit in HA carriers. This study investigated the iron-related structural and functional abnormalities in an Italian HA family. METHODS: Multimodal imaging was used including structural 3 T MRI, functional imaging (SPECT imaging with 123I-ioflupane (DAT-SPECT), cardiac 123I metaiodobenzylguanidine (123I-MIBG) scintigraphy, and 18F-fluorodeoxyglucose (18F-FDG)-PET imaging). In the proband, MRI and scintigraphic evaluations were performed at baseline, 2 and 4 years (structural imaging), and 2 years of follow-up period (functional imaging). RESULTS: We investigated two cousins carrying a novel splicing homozygous mutation in intron 6 (IVS6 + 1 G > A) of CP gene. Interestingly, MRI features in both subjects were characterized by marked iron accumulation in the thalami and basal ganglia nuclei, while GP was not affected. MRI performed in the proband at 2 and 4 years of follow-up confirmed progressive neurodegeneration of the thalami and basal ganglia without the involvement of GP. Functional imaging showed reduced putaminal DAT uptake in both cousins, whereas cardiac MIBG and FDG uptakes performed in the proband were normal. Longitudinal scintigraphic investigations did not show significant changes over the time. CONCLUSIONS: For HA carriers, our findings demonstrate that GP was spared by iron accumulation over the time. The nigrostriatal presynaptic dopaminergic system was damaged while the cardiac sympathetic system remained longitudinally preserved, thus expanding the imaging features of this rare inherited disorder.


Assuntos
Distúrbios do Metabolismo do Ferro , Doenças Neurodegenerativas , 3-Iodobenzilguanidina , Ceruloplasmina/deficiência , Humanos , Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Distúrbios do Metabolismo do Ferro/genética , Imageamento por Ressonância Magnética , Imagem Multimodal , Mutação , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
7.
Neurol Sci ; 42(1): 305-308, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32995992

RESUMO

Recently, the LRP10 gene has been associated with Parkinson's disease (PD), Parkinson's disease with dementia (PDD), and dementia with Lewy bodies (DLB). The aim of the present study was to evaluate the presence of mutations of the LRP10 gene in patients with PD or DLB from Southern Italy. Sequencing analysis revealed only 2 missense and 3 synonymous variants in patients and control subjects and a rare variant p.L622F in a PD case. These results suggest that LRP10 mutations are not a frequent cause of PD and DLB in Southern Italy.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Itália , Doença por Corpos de Lewy/genética , Mutação/genética , Doença de Parkinson/genética
8.
Neurogenetics ; 16(1): 55-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25294124

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder of complex aetiology. Rare, highly penetrant PD-causing mutations and common risk factors of small effect size have been identified in several genes/loci. However, these mutations and risk factors only explain a fraction of the disease burden, suggesting that additional, substantial genetic determinants remain to be found. Genetically isolated populations offer advantages for dissecting the genetic architecture of complex disorders, such as PD. We performed exome sequencing in 100 unrelated PD patients from Sardinia, a genetic isolate. SNPs absent from dbSNP129 and 1000 Genomes, shared by at least five patients, and of functional effects were genotyped in an independent Sardinian case-control sample (n = 500). Variants associated with PD with nominal p value <0.05 and those with odds ratio (OR) ≥3 were validated by Sanger sequencing and typed in a replication sample of 2965 patients and 2678 controls from Italy, Spain, and Portugal. We identified novel moderately rare variants in several genes, including SCAPER, HYDIN, UBE2H, EZR, MMRN2 and OGFOD1 that were specifically present in PD patients or enriched among them, nominating these as novel candidate risk genes for PD, although no variants achieved genome-wide significance after Bonferroni correction. Our results suggest that the genetic bases of PD are highly heterogeneous, with implications for the design of future large-scale exome or whole-genome analyses of this disease.


Assuntos
Exoma , Mutação , Doença de Parkinson/genética , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Itália/epidemiologia , Masculino , Doença de Parkinson/epidemiologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco
9.
Epilepsia ; 56(4): e40-3, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25752200

RESUMO

Genetic factors play a major role in the etiology of juvenile myoclonic epilepsy (JME), a common form of idiopathic generalized epilepsy, but so far, genes related to JME remain largely unknown. JME shares electroclinical features with Unverricht-Lundborg disease (progressive myoclonic epilepsy type 1; EPM1), a form of progressive myoclonus epilepsy characterized by myoclonus, epilepsy, and gradual neurologic deterioration. EPM1 is caused by mutations in the gene that codes for cystatin B (CSTB), an inhibitor of cysteine protease. In the present study, we wished to investigate the role of the CSTB gene in patients with JME. Fifty-seven unrelated patients (35 women; mean age ± standard deviation [SD], 24.1 ± 7.7; mean age ± SD at onset, 15.3 ± 2.4) with JME were enrolled. Twenty-three of 57 patients were the probands of families with JME. The molecular diagnosis was carried out to identify the common dodecamer repeat expansion mutation or other disease-causing mutations in the CSTB gene. The molecular analysis did not depict mutations in any of the 57 patients with JME. Our study did not support a role for the CSTB gene in patients with familial or sporadic JME.


Assuntos
Cistatina B/genética , Epilepsia Mioclônica Juvenil/diagnóstico , Epilepsia Mioclônica Juvenil/genética , Adolescente , Adulto , Feminino , Humanos , Masculino , Mutação/genética , Adulto Jovem
10.
BMC Med Genet ; 15: 131, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25496089

RESUMO

BACKGROUND: The transcription factor Nrf2, encoded by the NFE2L2 gene, is an important regulator of the cellular protection against oxidative stress. Parkinson's disease is a neurodegenerative disease highly associated with oxidative stress. In a previously published study, we reported associations of NFE2L2 haplotypes with risk and age at onset of idiopathic Parkinson's disease in a Swedish discovery material and a Polish replication material. Here, we have extended the replication study and performed meta-analyses including the Polish material and four new independent European patient-control materials. Furthermore, all SNPs included in the haplotype windows were investigated individually for associations with Parkinson's disease in meta-analyses including all six materials. METHODS: Totally 1038 patients and 1600 control subjects were studied. Based on previous NFE2L2 haplotype associations with Parkinson's disease, five NFE2L2 tag SNPs were genotyped by allelic discrimination and three functional NFE2L2 promoter SNPs were genotyped by sequencing. The impact of individual SNPs and haplotypes on risk and age at onset of Parkinson's disease were investigated in each material individually and in meta-analyses of the obtained results. RESULTS: Meta-analyses of NFE2L2 haplotypes showed association of haplotype GAGCAAAA, including the fully functional promoter haplotype AGC, with decreased risk (OR = 0.8 per allele, p = 0.012) and delayed onset (+1.1 years per allele, p = 0.048) of Parkinson's disease. These results support the previously observed protective effect of this haplotype in the first study. Further, meta-analyses of the SNPs included in the haplotypes revealed four NFE2L2 SNPs associated with age at onset of Parkinson's disease (rs7557529 G > A, -1.0 years per allele, p = 0.042; rs35652124 A > G, -1.1 years per allele, p = 0.045; rs2886161 A > G, -1.2 years per allele, p = 0.021; rs1806649 G > A, +1.2 years per allele, p = 0.029). One of these (rs35652124) is a functional SNP located in the NFE2L2 promoter. No individual SNP was associated with risk of Parkinson's disease. CONCLUSION: Our results support the hypothesis that variation in the NFE2L2 gene, encoding a central protein in the cellular protection against oxidative stress, may contribute to the pathogenesis of Parkinson's disease. Functional studies are now needed to explore these results further.


Assuntos
Estudo de Associação Genômica Ampla , Fator 2 Relacionado a NF-E2/genética , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Demografia , Feminino , Técnicas de Genotipagem , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Polônia/epidemiologia , Regiões Promotoras Genéticas , Fatores de Risco , Análise de Sequência de DNA , Suécia/epidemiologia
11.
Mov Disord ; 29(8): 1053-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24578302

RESUMO

OBJECTIVES: To determine whether α-synuclein dinucleotide repeat (REP1) genotypes are associated with survival in Parkinson's disease (PD). METHODS: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium provided REP1 genotypes and baseline and follow-up clinical data for cases. The primary outcome was time to death. Cox proportional hazards regression models were used to assess the association of REP1 genotypes with survival. RESULTS: Twenty-one sites contributed data for 6,154 cases. There was no significant association between α-synuclein REP1 genotypes and survival in PD. However, there was a significant association between REP1 genotypes and age at onset of PD (hazard ratio: 1.06; 95% confidence interval: 1.01-1.10; P value = 0.01). CONCLUSIONS: In our large consortium study, α-synuclein REP1 genotypes were not associated with survival in PD. Further studies of α-synuclein's role in disease progression and long-term outcomes are needed.


Assuntos
Repetições de Dinucleotídeos/genética , Predisposição Genética para Doença/genética , Doença de Parkinson/genética , Sobrevida , alfa-Sinucleína/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Cooperação Internacional , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/mortalidade
12.
Neurodegener Dis ; 14(3): 133-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25348593

RESUMO

BACKGROUND: Idiopathic basal ganglia calcification (IBGC), also known as Fahr's disease, is a rare disorder characterized by widespread cerebral calcifications, an autosomal dominant pattern of inheritance and clinical and genetic heterogeneity. The recently identified IBGC gene, SLC20A2, encodes for type III sodium-dependent phosphate transporter 2 and its loss-of-function mutations may lead to the regional accumulation of inorganic phosphate in the brain, causing calcium phosphate deposition. OBJECTIVE: To describe the clinical, neuroimaging and genetic findings in an Italian family with IBGC. METHODS: The family members underwent clinical and radiological examination in order to diagnose IBGC according to standard criteria and screening for SLC20A2 gene mutations. The affected subjects also underwent neuropsychological longitudinal assessments and functional neuroimaging investigations. RESULTS: The 2 affected family members harbored a novel missense mutation, G1618A, in the SLC20A2 gene, leading to gly540-to-arg (G540R) substitution in a highly conserved residue. This is the first SLC20A2 gene mutation associated with familial IBGC reported in the Italian population and is damaging according to all prediction programs. In the index case we observed a fair correlation between cortical areas with no calcifications but with significant hypometabolism at [18F]FDG-PET (inferior frontal premotor cortex) and the neuropsychological picture dominated by dynamic aphasia and buccofacial apraxia. CONCLUSION: These findings expand the catalog of SLC20A2 mutations identified to date and add dynamic aphasia to the spectrum of neuropsychological deficits reported in IBGC, supporting the use of functional neuroimaging studies for better investigation of genotype-phenotype correlations.


Assuntos
Afasia/genética , Afasia/fisiopatologia , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/fisiopatologia , Calcinose/genética , Calcinose/fisiopatologia , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Idoso , Afasia/patologia , Doenças dos Gânglios da Base/patologia , Encéfalo/patologia , Calcinose/patologia , Família , Feminino , Seguimentos , Humanos , Itália , Estudos Longitudinais , Masculino , Doenças Neurodegenerativas/patologia , Linhagem , Adulto Jovem
13.
Epilepsia Open ; 9(3): 951-959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544349

RESUMO

OBJECTIVES: Myotonia is a clinical sign typical of a group of skeletal muscle channelopathies, the non-dystrophic myotonias. These disorders are electrophysiologically characterized by altered membrane excitability, due to specific genetic variants in known causative genes (CLCN1 and SCN4A). Juvenile Myoclonic Epilepsy (JME) is an epileptic syndrome identified as idiopathic generalized epilepsy, its genetics is complex and still unclarified. The co-occurrence of these two phenotypes is rare and the causes likely have a genetic background. In this study, we have genetically investigated an Italian family in which co-segregates myotonia, JME, or abnormal EEG without seizures was observed. METHODS: All six individuals of the family, 4 affected and 2 unaffected, were clinically evaluated; EMG and EEG examinations were performed. For genetic testing, Exome Sequencing was performed for the six family members and Sanger sequencing was used to confirm the candidate variant. RESULTS: Four family members, the mother and three siblings, were affected by myotonia. Moreover, EEG recordings revealed interictal generalized sharp-wave discharges in all affected individuals, and two siblings were affected by JME. All four affected members share the same identified variant, c.644 T > C, p.Ile215Thr, in SCN4A gene. Variants that could account for the epileptic phenotype alone, separately from the myotonic one, were not identified. SIGNIFICANCE: These results provide supporting evidence that both myotonic and epileptic phenotypes could share a common genetic background, due to variants in SCN4A gene. SCN4A pathogenic variants, already known to be causative of myotonia, likely increase the susceptibility to epilepsy in our family. PLAIN LANGUAGE SUMMARY: This study analyzed all members of an Italian family, in which the mother and three siblings had myotonia and epilepsy. Genetic analysis allowed to identify a variant in the SCN4A gene, which appears to be the cause of both clinical signs in this family.


Assuntos
Eletroencefalografia , Epilepsia Generalizada , Canal de Sódio Disparado por Voltagem NAV1.4 , Linhagem , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Epilepsia Generalizada/genética , Itália , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Fenótipo
14.
Hum Mutat ; 34(9): 1208-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804577

RESUMO

Autosomal recessive, early-onset Parkinsonism is clinically and genetically heterogeneous. Here, we report the identification, by homozygosity mapping and exome sequencing, of a SYNJ1 homozygous mutation (p.Arg258Gln) segregating with disease in an Italian consanguineous family with Parkinsonism, dystonia, and cognitive deterioration. Response to levodopa was poor, and limited by side effects. Neuroimaging revealed brain atrophy, nigrostriatal dopaminergic defects, and cerebral hypometabolism. SYNJ1 encodes synaptojanin 1, a phosphoinositide phosphatase protein with essential roles in the postendocytic recycling of synaptic vesicles. The mutation is absent in variation databases and in ethnically matched controls, is damaging according to all prediction programs, and replaces an amino acid that is extremely conserved in the synaptojanin 1 homologues and in SAC1-like domains of other proteins. Sequencing the SYNJ1 ORF in unrelated patients revealed another heterozygous mutation (p.Ser1422Arg), predicted as damaging, in a patient who also carries a heterozygous PINK1 truncating mutation. The SYNJ1 gene is a compelling candidate for Parkinsonism; mutations in the functionally linked protein auxilin cause a similar early-onset phenotype, and other findings implicate endosomal dysfunctions in the pathogenesis. Our data delineate a novel form of human Mendelian Parkinsonism, and provide further evidence for abnormal synaptic vesicle recycling as a central theme in the pathogenesis.


Assuntos
Transtornos Parkinsonianos/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Adolescente , Adulto , Idade de Início , Auxilinas/metabolismo , Criança , Transtornos Cognitivos , Consanguinidade , Distonia , Exoma , Feminino , Genes Recessivos , Variação Genética , Homozigoto , Humanos , Itália , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/tratamento farmacológico , Linhagem , Radiografia , Análise de Sequência de DNA , Adulto Jovem
15.
Mov Disord ; 28(12): 1740-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913756

RESUMO

BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease susceptibility displays many features that reflect the nature of complex, late-onset sporadic disorders like Parkinson's disease. METHODS: The Genetic Epidemiology of Parkinson's Disease Consortium recently performed the largest genetic association study for variants in the leucine-rich repeat kinase 2 gene across 23 different sites in 15 countries. RESULTS: Herein, we detail the allele frequencies for the novel risk factors (p.A419V and p.M1646T) and the protective haplotype (p.N551K-R1398H-K1423K) nominated in the original publication. Simple population allele frequencies not only can provide insight into the clinical relevance of specific variants but also can help genetically define patient groups. CONCLUSIONS: Establishing individual patient-based genomic susceptibility profiles that incorporate both risk factors and protective factors will determine future diagnostic and treatment strategies.


Assuntos
Frequência do Gene , Predisposição Genética para Doença , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Estudos de Associação Genética , Genética Populacional , Genótipo , Haplótipos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Epidemiologia Molecular , Polimorfismo de Nucleotídeo Único
16.
Epilepsia ; 54(5): 927-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23398611

RESUMO

PURPOSE: To report the identification of the T1174S SCN1A (NaV 1.1) mutation in a three-generation family with both epileptic and familial hemiplegic migraine (FHM) phenotypes and clarify the pathomechanism. METHODS: The five affected individuals underwent detailed clinical analyses. Mutation analyses was performed by direct sequencing of SCN1A; functional studies by expression in tsA-201 cells. A computational model was used to compare the effects of T1174S with those of a typical FHM mutation (Q1489K). KEY FINDINGS: The proband had benign occipital epilepsy (BOE); two relatives had simple febrile seizures (FS) and later developed BOE. Two additional relatives had FHM without epilepsy or FS. All affected members and one obliged carrier carried the T1174S mutation. Functional effects were divergent: positive shift of the activation curve and deceleration of recovery from fast inactivation, consistent with loss of function, and increase of persistent current (I(NaP)), consistent with gain of function. The I(NaP) increase was inhibited by dialysis of the cytoplasm, consistent with a modulation. Therefore, as shown by the computational model, T1174S could in some conditions induce overall loss of function, and in others gain of function; Q1489K induced gain of function in all the conditions. SIGNIFICANCE: Modulation of the properties of T1174S can lead to a switch between overall gain and loss of function, consistent with a switch between promigraine end epileptogenic effect and, thus, with coexistence of epileptic and FHM phenotypes in the same family. These findings may help to shed light on the complex genotype-phenotype relationship of SCN1A mutations.


Assuntos
Enxaqueca com Aura/complicações , Enxaqueca com Aura/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões/complicações , Convulsões/genética , Adolescente , Adulto , Linhagem Celular Transformada , Simulação por Computador , Análise Mutacional de DNA , Estimulação Elétrica , Feminino , Humanos , Itália , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Pessoa de Meia-Idade , Modelos Moleculares , Técnicas de Patch-Clamp , Fenótipo , Serina/genética , Treonina/genética , Adulto Jovem
17.
J Med Genet ; 49(11): 721-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23125461

RESUMO

BACKGROUND: Two recent studies identified a mutation (p.Asp620Asn) in the vacuolar protein sorting 35 gene as a cause for an autosomal dominant form of Parkinson disease . Although additional missense variants were described, their pathogenic role yet remains inconclusive. METHODS AND RESULTS: We performed the largest multi-center study to ascertain the frequency and pathogenicity of the reported vacuolar protein sorting 35 gene variants in more than 15,000 individuals worldwide. p.Asp620Asn was detected in 5 familial and 2 sporadic PD cases and not in healthy controls, p.Leu774Met in 6 cases and 1 control, p.Gly51Ser in 3 cases and 2 controls. Overall analyses did not reveal any significant increased risk for p.Leu774Met and p.Gly51Ser in our cohort. CONCLUSIONS: Our study apart from identifying the p.Asp620Asn variant in familial cases also identified it in idiopathic Parkinson disease cases, and thus provides genetic evidence for a role of p.Asp620Asn in Parkinson disease in different populations worldwide.


Assuntos
Mutação , Doença de Parkinson/genética , Proteínas de Transporte Vesicular/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Fatores de Risco , Proteínas de Transporte Vesicular/metabolismo
18.
Nat Genet ; 34(1): 29-31, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692552

RESUMO

Dietary fat is an important source of nutrition. Here we identify eight mutations in SARA2 that are associated with three severe disorders of fat malabsorption. The Sar1 family of proteins initiates the intracellular transport of proteins in COPII (coat protein)-coated vesicles. Our data suggest that chylomicrons, which vastly exceed the size of typical COPII vesicles, are selectively recruited by the COPII machinery for transport through the secretory pathways of the cell.


Assuntos
Gorduras na Dieta/farmacocinética , GTP Fosfo-Hidrolases/genética , Síndromes de Malabsorção/enzimologia , Síndromes de Malabsorção/genética , Mutação , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/enzimologia , Quilomícrons/metabolismo , Feminino , GTP Fosfo-Hidrolases/química , Doença de Depósito de Glicogênio Tipo IV/enzimologia , Doença de Depósito de Glicogênio Tipo IV/genética , Humanos , Absorção Intestinal , Síndromes de Malabsorção/metabolismo , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica , Degenerações Espinocerebelares/enzimologia , Degenerações Espinocerebelares/genética
19.
Neurobiol Aging ; 125: 123-124, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828691

RESUMO

Recently, a novel pathogenic variant in Annexin A1 protein (c.4G > A, p.Ala2Thr) has been identified in an Iranian consanguineous family with autosomal recessive parkinsonism. The deficiencies of ANXA1 could lead to extracellular SNCA accumulation, defects in intracellular signaling pathways and synaptic plasticity causing parkinsonism. The aim of this study was to identify rare ANXA1 variants in 95 early-onset PD patients from South Italy. Sequencing analysis of ANXA1 gene revealed only 2 synonymous variants in PD patients (rs1050305, rs149033255). Therefore, we conclude that the recently published ANXA1 mutation is not a common cause of EOPD in Southern Italy.


Assuntos
Transtornos Parkinsonianos , Humanos , Idade de Início , Irã (Geográfico) , Itália , Mutação/genética , Transtornos Parkinsonianos/genética
20.
PLoS One ; 18(10): e0292180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37788254

RESUMO

Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Cuidados Paliativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA