Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 185(7): 1130-1142.e11, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294858

RESUMO

G protein-coupled receptors (GPCRs) relay extracellular stimuli into specific cellular functions. Cells express many different GPCRs, but all these GPCRs signal to only a few second messengers such as cAMP. It is largely unknown how cells distinguish between signals triggered by different GPCRs to orchestrate their complex functions. Here, we demonstrate that individual GPCRs signal via receptor-associated independent cAMP nanodomains (RAINs) that constitute self-sufficient, independent cell signaling units. Low concentrations of glucagon-like peptide 1 (GLP-1) and isoproterenol exclusively generate highly localized cAMP pools around GLP-1- and ß2-adrenergic receptors, respectively, which are protected from cAMP originating from other receptors and cell compartments. Mapping local cAMP concentrations with engineered GPCR nanorulers reveals gradients over only tens of nanometers that define the size of individual RAINs. The coexistence of many such RAINs allows a single cell to operate thousands of independent cellular signals simultaneously, rather than function as a simple "on/off" switch.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Fenômenos Fisiológicos Celulares , AMP Cíclico , Peptídeo 1 Semelhante ao Glucagon , Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G/química , Sistemas do Segundo Mensageiro
2.
Cell ; 182(6): 1519-1530.e17, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32846156

RESUMO

Cells relay a plethora of extracellular signals to specific cellular responses by using only a few second messengers, such as cAMP. To explain signaling specificity, cAMP-degrading phosphodiesterases (PDEs) have been suggested to confine cAMP to distinct cellular compartments. However, measured rates of fast cAMP diffusion and slow PDE activity render cAMP compartmentalization essentially impossible. Using fluorescence spectroscopy, we show that, contrary to earlier data, cAMP at physiological concentrations is predominantly bound to cAMP binding sites and, thus, immobile. Binding and unbinding results in largely reduced cAMP dynamics, which we term "buffered diffusion." With a large fraction of cAMP being buffered, PDEs can create nanometer-size domains of low cAMP concentrations. Using FRET-cAMP nanorulers, we directly map cAMP gradients at the nanoscale around PDE molecules and the areas of resulting downstream activation of cAMP-dependent protein kinase (PKA). Our study reveals that spatiotemporal cAMP signaling is under precise control of nanometer-size domains shaped by PDEs that gate activation of downstream effectors.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Simulação por Computador , AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Citoplasma/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes , Análise Espaço-Temporal , Espectrometria de Fluorescência
4.
PLoS Biol ; 22(4): e3002582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683874

RESUMO

Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.


Assuntos
Respiração Celular , Mitocôndrias , Receptor Muscarínico M2 , Animais , Humanos , Camundongos , Proliferação de Células , Células HEK293 , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M2/genética , Estresse Fisiológico
5.
Mol Cell ; 75(5): 982-995.e9, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31444106

RESUMO

Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures ("kissing loops"). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function.


Assuntos
Genes Supressores de Tumor , Motivos de Nucleotídeos , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células HCT116 , Humanos , Dobramento de RNA , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética
6.
Chembiochem ; 25(2): e202300659, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37942961

RESUMO

The family of dopamine D2 -like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 (20) as a high-affinity ligand for D2 -like receptors (pKi (D2long R)=8.24, pKi (D3 R)=8.58, pKi (D4 R)=7.78) with decent selectivity towards D1 -like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2long R, D3 R, and D4 R, which is an important feature for studies using whole cells. The neutral antagonist 20, equipped with a 5-TAMRA dye, displayed rapid association to the D2long R in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2 -like receptors in a broad variety of experimental setups.


Assuntos
Dopamina , Receptores de Dopamina D2 , Receptores de Dopamina D2/metabolismo , Antagonistas de Dopamina/farmacologia , Ligantes , Ensaio Radioligante , Corantes
7.
Chembiochem ; 25(2): e202300658, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37983731

RESUMO

Dopamine D1 -like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1 R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1 -like receptors (pKi (D1 R)=8.34, pKi (D5 R)=7.62) with excellent selectivity towards D2 -like receptors. Compound 25 proved to be a neutral antagonist at the D1 R and D5 R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1 R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups.


Assuntos
Corantes Fluorescentes , Receptores de Dopamina D1 , Receptores de Dopamina D1/metabolismo , Ligantes , Fluorescência
8.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088840

RESUMO

A key question in receptor signaling is how specificity is realized, particularly when different receptors trigger the same biochemical pathway(s). A notable case is the two ß-adrenergic receptor (ß-AR) subtypes, ß1 and ß2, in cardiomyocytes. They are both coupled to stimulatory Gs proteins, mediate an increase in cyclic adenosine monophosphate (cAMP), and stimulate cardiac contractility; however, other effects, such as changes in gene transcription leading to cardiac hypertrophy, are prominent only for ß1-AR but not for ß2-AR. Here, we employ highly sensitive fluorescence spectroscopy approaches, in combination with a fluorescent ß-AR antagonist, to determine the presence and dynamics of the endogenous receptors on the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. These techniques allow us to visualize that the ß2-AR is confined to and diffuses within the T-tubular network, as opposed to the ß1-AR, which is found to diffuse both on the outer plasma membrane as well as on the T-tubules. Upon overexpression of the ß2-AR, this compartmentalization is lost, and the receptors are also seen on the cell surface. Such receptor segregation depends on the development of the T-tubular network in adult cardiomyocytes since both the cardiomyoblast cell line H9c2 and the cardiomyocyte-differentiated human-induced pluripotent stem cells express the ß2-AR on the outer plasma membrane. These data support the notion that specific cell surface targeting of receptor subtypes can be the basis for distinct signaling and functional effects.


Assuntos
Membrana Celular/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Imagem Molecular , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Humanos , Camundongos , Camundongos Transgênicos , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética
9.
Proc Natl Acad Sci U S A ; 117(46): 29144-29154, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33148803

RESUMO

Although class A G protein-coupled receptors (GPCRs) can function as monomers, many of them form dimers and oligomers, but the mechanisms and functional relevance of such oligomerization is ill understood. Here, we investigate this problem for the CXC chemokine receptor 4 (CXCR4), a GPCR that regulates immune and hematopoietic cell trafficking, and a major drug target in cancer therapy. We combine single-molecule microscopy and fluorescence fluctuation spectroscopy to investigate CXCR4 membrane organization in living cells at densities ranging from a few molecules to hundreds of molecules per square micrometer of the plasma membrane. We observe that CXCR4 forms dynamic, transient homodimers, and that the monomer-dimer equilibrium is governed by receptor density. CXCR4 inverse agonists that bind to the receptor minor pocket inhibit CXCR4 constitutive activity and abolish receptor dimerization. A mutation in the minor binding pocket reduced the dimer-disrupting ability of these ligands. In addition, mutating critical residues in the sixth transmembrane helix of CXCR4 markedly diminished both basal activity and dimerization, supporting the notion that CXCR4 basal activity is required for dimer formation. Together, these results link CXCR4 dimerization to its density and to its activity. They further suggest that inverse agonists binding to the minor pocket suppress both dimerization and constitutive activity and may represent a specific strategy to target CXCR4.


Assuntos
Dimerização , Microscopia de Fluorescência/métodos , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutação , Conformação Proteica , Multimerização Proteica , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Receptores de Quimiocinas
10.
Nat Chem Biol ; 16(9): 946-954, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32541966

RESUMO

G-protein-coupled receptors (GPCRs) are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. Using single-molecule microscopy combined with super-resolution techniques on intact cells, we describe here a dynamic monomer-dimer equilibrium of µ-opioid receptors (µORs), where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates both temporally and in its agonist- and phosphorylation-dependence with ß-arrestin2 binding to the receptors. This dimerization is independent from, but may precede, µOR internalization. These data suggest a new level of GPCR regulation that links dimer formation to specific agonists and their downstream signals.


Assuntos
Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Imagem Individual de Molécula/métodos , Animais , Células CHO , Cricetulus , Ala(2)-MePhe(4)-Gly(5)-Encefalina/química , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Transferência Ressonante de Energia de Fluorescência , Morfina/química , Morfina/farmacologia , Mutação , Naloxona/química , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/química , Naltrexona/farmacologia , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacologia , Fosforilação , Multimerização Proteica , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/genética , beta-Arrestinas/metabolismo
11.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142320

RESUMO

The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the ß1- and ß2-adrenergic receptors (ß1/2-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of ß-ARs in adult CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Adulto , Diferenciação Celular/genética , Membrana Celular , Células Cultivadas , Humanos , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Receptores Adrenérgicos beta/metabolismo , Espectrometria de Fluorescência
12.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059383

RESUMO

The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin-melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and ß-arrestin2 recruitment, using the two endogenous agonists, α- and ß-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.


Assuntos
Mutação , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Leptina/metabolismo , Ligantes , Melanocortinas/metabolismo , Modelos Teóricos , Obesidade/genética , Fosforilação , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/metabolismo , alfa-MSH/metabolismo
13.
J Cell Sci ; 129(18): 3412-25, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27505898

RESUMO

Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.


Assuntos
Citoesqueleto de Actina/metabolismo , Núcleo Celular/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Actinas/metabolismo , Animais , Células COS , Proliferação de Células , Chlorocebus aethiops , Reagentes de Ligações Cruzadas/metabolismo , Células HeLa , Humanos , Polimerização , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Opt Express ; 24(2): 1031-6, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832485

RESUMO

Electrically tunable lenses are becoming a widely used optical tool, and have brought significant innovation to microscopy methods. One current limitation of such systems is the difficulty of directly monitor the focal change in real time. Affordable and reliable feedback for such lenses, compatible with any microscopy setup, represents a much-needed improvement that is still not widely available. We discuss here the implementation and technical performance of an optical device to measure with a high frequency response the displacement of the focal offset of a commercial tunable lens with a precision in the range of the axial Point Spread Function (PSF) of the microscope. The technology presented is cost effective and can be employed on any microscopy setup.


Assuntos
Lentes , Fenômenos Ópticos , Eletricidade , Desenho de Equipamento , Retroalimentação
16.
Opt Lett ; 41(19): 4503-4506, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749866

RESUMO

The determination of the mode and rapidity of motion of individual molecules within a biological sample is becoming a more and more common analysis in biophysical investigations. Single molecule tracking (SMT) techniques allow reconstructing the trajectories of individual molecules within a movie, provided that the position from one frame to the other can be correctly linked. The outcomes, however, appear to depend on the specific method used, and most techniques display a limitation to capture fast modes of motion in a crowded environment. We demonstrate here that the limitations encountered by conventional SMT can be significantly overcome by employing alternative approaches based on image spatial-temporal correlations, enabling to visually extract quantitative insights on the ensemble mode of motion of fluorescently labeled biomolecules that would otherwise be inaccessible.

17.
Acta Physiol (Oxf) ; 240(4): e14124, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436094

RESUMO

AIM: Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. METHODS: 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. RESULTS: HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. CONCLUSION: In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.


Assuntos
Insuficiência Cardíaca , Função Ventricular Esquerda , Humanos , Masculino , Animais , Camundongos , Volume Sistólico , Função Ventricular Esquerda/fisiologia , Adrenérgicos , Modelos Animais de Doenças , Óxido Nítrico , Camundongos Endogâmicos C57BL
18.
J Biol Chem ; 287(20): 16768-80, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22442147

RESUMO

Recent developments in the field of optical super-resolution techniques allow both a 10-fold increase in resolution as well as an increased ability to quantify the number of labeled molecules visualized in the fluorescence measurement. By using photoactivated localization microscopy (PALM) and an experimental approach based on the systematic comparison with a nonclustering peptide as a negative control, we found that the prototypical G protein-coupled receptor ß2-adrenergic receptor is partially preassociated in nanoscale-sized clusters only in the cardiomyocytes, such as H9C2 cells, but not in other cell lines, such as HeLa and Chinese hamster ovary (CHO). The addition of the agonist for very short times or the addition of the inverse agonist did not significantly affect the organization of receptor assembly. To investigate the mechanism governing cluster formation, we altered plasma membrane properties with cholesterol removal and actin microfilament disruption. Although cholesterol is an essential component of cell membranes and it is supposed to be enriched in the lipid rafts, its sequestration and removal did not affect receptor clustering, whereas the inhibition of actin polymerization did decrease the number of clusters. Our findings are therefore consistent with a model in which ß2 receptor clustering is influenced by the actin cytoskeleton, but it does not rely on lipid raft integrity, thus ruling out the possibility that cell type-specific ß2 receptor clustering is associated with the raft.


Assuntos
Citoesqueleto de Actina/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Receptores Adrenérgicos beta 2/metabolismo , Citoesqueleto de Actina/genética , Animais , Células CHO , Colesterol/genética , Colesterol/metabolismo , Cricetinae , Cricetulus , Células HeLa , Humanos , Microdomínios da Membrana/genética , Camundongos , Especificidade de Órgãos/fisiologia , Receptores Adrenérgicos beta 2/genética
19.
Biochem Soc Trans ; 41(1): 191-6, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356282

RESUMO

The possibility to visualize and image the arrangement of proteins within the cell at the molecular level has always been an attraction for scientists in biological research. In particular, for signalling molecules such as GPCRs (G-protein-coupled receptors), the existence of protein aggregates such as oligomers or clusters has been the topic of extensive debate. One of the reasons for this lively argument is that the molecular size is below the diffraction-limited resolution of the conventional microscopy, precluding the direct visualization of protein super-structures. On the other hand, new super-resolution microscopy techniques, such as the PALM (photoactivated localization microscopy), allow the limit of the resolution power of conventional optics to be broken and the localization of single molecules to be determined with a precision of 10-20 nm, close to their molecular size. The application of super-resolution microscopy to study the spatial and temporal organization of GPCRs has brought new insights into receptor arrangement on the plasma membrane. Furthermore, the use of this powerful microscopy technique as a quantitative tool opens up the possibility for investigating and quantifying the number of molecules in biological assemblies and determining the protein stoichiometry in signalling complexes.


Assuntos
Luz , Proteínas de Membrana/metabolismo , Microscopia/métodos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Ratos
20.
Cells ; 11(10)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35626696

RESUMO

Spatiotemporal signal shaping in G protein-coupled receptor (GPCR) signaling is now a well-established and accepted notion to explain how signaling specificity can be achieved by a superfamily sharing only a handful of downstream second messengers. Dozens of Gs-coupled GPCR signals ultimately converge on the production of cAMP, a ubiquitous second messenger. This idea is almost always framed in terms of local concentrations, the differences in which are maintained by means of spatial separation. However, given the dynamic nature of the reaction-diffusion processes at hand, the dynamics, in particular the local diffusional properties of the receptors and their cognate G proteins, are also important. By combining some first principle considerations, simulated data, and experimental data of the receptors diffusing on the membranes of living cells, we offer a short perspective on the modulatory role of local membrane diffusion in regulating GPCR-mediated cell signaling. Our analysis points to a diffusion-limited regime where the effective production rate of activated G protein scales linearly with the receptor-G protein complex's relative diffusion rate and to an interesting role played by the membrane geometry in modulating the efficiency of coupling.


Assuntos
Proteínas de Membrana , Receptores Acoplados a Proteínas G , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA