RESUMO
The zebrafish is increasingly employed in behavioral neuroscience as a translationally relevant model organism for human central nervous system disorders. One of the most prevalent CNS disorders representing an unmet medical need is the disorder cluster defined under the umbrella term anxiety disorders. Zebrafish have been shown to respond to a variety of anxiety and fear inducing stimuli and have been suggested for modeling human anxiety. Here, we describe a simple method with which we intend to induce fear/anxiety responses in this species. The method allows us to deliver a visual and lateral line stimulus (vibration or "tapping") to the fish with the use of a moving object, a ball colliding with the side glass of the experimental tank. We describe the hardware construction of the apparatus and the procedure of the behavioral paradigm. We also present data on how zebrafish respond to the tapping. Our results demonstrate that the method induces significant fear/anxiety responses. We argue that the simplicity of the method and the efficiency of the paradigm should make it popular among those who plan to use zebrafish as a tool in anxiety research.
Assuntos
Neurociências , Peixe-Zebra , Humanos , AnimaisRESUMO
The zebrafish is becoming increasingly utilized in behavioral neuroscience as it appears to strike a good compromise between practical simplicity and system complexity. Particularly in alcohol (ethanol) research, the zebrafish has been employed as a translationally relevant model organism. However, the majority of studies investigating the effects of alcohol on brain function and behavior has used adult zebrafish. In the current study, we utilize 6-8 post-fertilization day old larval zebrafish (fry) to investigate the effects of a 40â¯min-long, acute, immersion into the alcohol bath. We measure the behavioral responses of the fry during the immersion session in relatively large arenas, the petri dish, instead of the often employed 96 well plate, and report on significant modification of behavior induced by alcohol. For example, we found the intermediate dose of alcohol (0.5%, vol/vol) to exert a stimulant effect manifesting as slight elevation of swim speed, robust increase of turning, temporal variability of swim speed and turning, and diminished frequency of staying immobile. We also found the high dose of 1% alcohol to elicit an opposite response, a sedative effect. This biphasic dose response of alcohol mimics what has been found in mammals, including humans, and thus we conclude that a few day-old zebrafish fry may be a cost effective and efficient tool with which one can screen for small molecules or mutations with alcohol-effect modifying properties.
Assuntos
Comportamento Animal/efeitos dos fármacos , Etanol/administração & dosagem , Larva/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Relação Dose-Resposta a Droga , Etanol/toxicidadeRESUMO
Alcohol (ethanol) abuse remains to be a leading cause of medical, including mental, problems throughout the world. Whether alcohol consumption leads to chronic use, and subsequent alcohol dependency and abuse is known to be influenced by the acute effects of this drug. Numerous factors may influence how alcohol administered acutely affects the individual. For example, the mechanisms engaged by drugs of abuse, e.g. cocaine as well as alcohol, have been shown to overlap with those underlying circadian rhythm, and conversely, the effects of these drugs may be dependent upon the time of day of their consumption. To investigate the interaction between circadian rhythm and alcohol, here we employ a simple vertebrate model organism that was previously successfully utilized in other aspects of alcohol research, the zebrafish. We expose zebrafish to alcohol for 20â¯min in the morning or in the evening, and analyze the effects of this treatment by comparing 1% (vol/vol) alcohol-treated and control (alcohol naive) zebrafish. We record numerous swim path parameters, and report, for the first time, that the time of day of alcohol administration differentially affects certain behavioral parameters, enhancing some while blunting others. Our results suggest a complex interaction between circadian dependent and alcohol engaged mechanisms, findings that represent both practical complications as well as opportunities for understanding how alcohol affects brain function and behavior of vertebrates.
Assuntos
Comportamento Animal , Etanol/administração & dosagem , Peixe-Zebra/fisiologia , Animais , Feminino , Masculino , Natação , Fatores de TempoRESUMO
In recent years, a rapidly increasing number of scientific papers have been published that utilize zebrafish (Danio rerio) as an alternative model organism in the study of a wide range of biological phenomena from cancer to behavior. This is, in large part, due to the prolific nature, relative ease of maintenance, and sufficiently high genetic homology of zebrafish to humans. With the surge of zebrafish use in animal research, the variations in methodologies of breeding and husbandry of this species have also increased. Investigators usually focus on the development and implementation of rigorous laboratory control that is specific to their studies. We suggest that the same scrutiny and attention may be required for the methods of breeding and housing of zebrafish. This article reviews a variety of zebrafish husbandry and breeding techniques and conditions employed around the world. It discusses factors ranging from numerous aspects of rearing/housing conditions through the sex ratio of the breeding group to the composition of the diet of zebrafish that may vary across laboratories. It provides some feedback on the potential pros and cons of the different methods. It argues that there is a substantial need for systematic analysis of these methods, that is, the effects of environmental factors on zebrafish health and breeding. It also discusses the question as to whether some degree of standardization of these methods is needed to enhance cross-laboratory comparability of results.