Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 160(3): 489-502, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25619690

RESUMO

Protein kinase C (PKC) isozymes have remained elusive cancer targets despite the unambiguous tumor promoting function of their potent ligands, phorbol esters, and the prevalence of their mutations. We analyzed 8% of PKC mutations identified in human cancers and found that, surprisingly, most were loss of function and none were activating. Loss-of-function mutations occurred in all PKC subgroups and impeded second-messenger binding, phosphorylation, or catalysis. Correction of a loss-of-function PKCß mutation by CRISPR-mediated genome editing in a patient-derived colon cancer cell line suppressed anchorage-independent growth and reduced tumor growth in a xenograft model. Hemizygous deletion promoted anchorage-independent growth, revealing that PKCß is haploinsufficient for tumor suppression. Several mutations were dominant negative, suppressing global PKC signaling output, and bioinformatic analysis suggested that PKC mutations cooperate with co-occurring mutations in cancer drivers. These data establish that PKC isozymes generally function as tumor suppressors, indicating that therapies should focus on restoring, not inhibiting, PKC activity.


Assuntos
Proteína Quinase C/química , Proteína Quinase C/genética , Animais , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Genes Supressores de Tumor , Xenoenxertos , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos Nus , Modelos Moleculares , Mutação , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína
2.
Nature ; 569(7754): 131-135, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30996350

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Fator Inibidor de Leucemia/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Comunicação Parácrina , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Carcinogênese/genética , Carcinoma Ductal Pancreático/diagnóstico , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Feminino , Humanos , Fator Inibidor de Leucemia/antagonistas & inibidores , Fator Inibidor de Leucemia/sangue , Masculino , Espectrometria de Massas , Camundongos , Neoplasias Pancreáticas/diagnóstico , Comunicação Parácrina/efeitos dos fármacos , Receptores de OSM-LIF/deficiência , Receptores de OSM-LIF/genética , Receptores de OSM-LIF/metabolismo , Microambiente Tumoral
3.
J Biol Chem ; 296: 100445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617877

RESUMO

Within the AGC kinase superfamily, gene fusions resulting from chromosomal rearrangements have been most frequently described for protein kinase C (PKC), with gene fragments encoding either the C-terminal catalytic domain or the N-terminal regulatory moiety fused to other genes. Kinase fusions that eliminate regulatory domains are typically gain of function and often oncogenic. However, several quality control pathways prevent accumulation of aberrant PKC, suggesting that PKC fusions may paradoxically be loss of function. To explore this topic, we used biochemical, cellular, and genome editing approaches to investigate the function of fusions that retain the portion of the gene encoding either the catalytic domain or regulatory domain of PKC. Overexpression studies revealed that PKC catalytic domain fusions were constitutively active but vulnerable to degradation. Genome editing of endogenous genes to generate a cancer-associated PKC fusion resulted in cells with detectable levels of fusion transcript but no detectable protein. Hence, PKC catalytic domain fusions are paradoxically loss of function as a result of their instability, preventing appreciable accumulation of protein in cells. Overexpression of a PKC regulatory domain fusion suppressed both basal and agonist-induced endogenous PKC activity, acting in a dominant-negative manner by competing for diacylglycerol. For both catalytic and regulatory domain fusions, the PKC component of the fusion proteins mediated the effects of the full-length fusions on the parameters examined, suggesting that the partner protein is dispensable in these contexts. Taken together, our findings reveal that PKC gene fusions are distinct from oncogenic fusions and present a mechanism by which loss of PKC function occurs in cancer.


Assuntos
Neoplasias/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Animais , Sítios de Ligação , Células COS , Domínio Catalítico , Linhagem Celular Tumoral , Chlorocebus aethiops , Diglicerídeos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Mutação com Perda de Função/genética , Fosforilação , Domínios Proteicos , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Clin Sci (Lond) ; 130(17): 1499-510, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27433023

RESUMO

Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure.


Assuntos
Coração/fisiologia , Miocárdio/enzimologia , Proteína Quinase C/metabolismo , Animais , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação , Proteína Quinase C/genética
6.
Mol Cell Proteomics ; 12(12): 3498-508, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23788531

RESUMO

The plasma membrane serves as a dynamic interface that relays information received at the cell surface into the cell. Lipid second messengers coordinate signaling on this platform by recruiting and activating kinases and phosphatases. Specifically, diacylglycerol and phosphatidylinositol 3,4,5-trisphosphate activate protein kinase C and Akt, respectively, which then phosphorylate target proteins to transduce downstream signaling. This review addresses how the spatiotemporal dynamics of protein kinase C and Akt signaling can be monitored using genetically encoded reporters and provides information on how the coordination of signaling at protein scaffolds or membrane microdomains affords fidelity and specificity in phosphorylation events.


Assuntos
Diglicerídeos/metabolismo , Microdomínios da Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sistemas do Segundo Mensageiro , Animais , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Humanos , Microdomínios da Membrana/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-akt/genética
7.
J Biol Chem ; 288(23): 16905-16915, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23589289

RESUMO

The cellular activation of conventional protein kinase C (PKC) isozymes is initiated by the binding of their C2 domains to membranes in response to elevations in intracellular Ca(2+). Following this C2 domain-mediated membrane recruitment, the C1 domain binds its membrane-embedded ligand diacylglycerol, resulting in activation of PKC. Here we explore the molecular mechanisms by which the C2 domain controls the initial step in the activation of PKC. Using stopped-flow fluorescence spectroscopy to measure association and dissociation rate constants, we show that hydrophobic interactions are the major driving force in the binding of the C2 domain to anionic membranes, whereas electrostatic interactions dominate in membrane retention. Specifically, mutation of select hydrophobic or select basic residues in the Ca(2+)-binding loops reduces membrane affinity by distinct mechanisms; mutation of hydrophobic residues primarily alters association rate constants, whereas mutation of charged residues affects dissociation rate constants. Live cell imaging reveals that introduction of these mutations into full-length PKCα not only reduces the Ca(2+)-dependent translocation to plasma membrane but, by impairing the plasma membrane-sensing role of the C2 domain, causes phorbol ester-triggered redistribution of PKCα to other membranes, such as the Golgi. These data underscore the key role of the C2 domain in driving conventional PKC isozymes to the plasma membrane and reveal that not only the amplitude but also the subcellular location of conventional PKC signaling can be tuned by altering the affinity of this module for membranes.


Assuntos
Cálcio/metabolismo , Membrana Celular/enzimologia , Proteína Quinase C-alfa/metabolismo , Animais , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutação , Proteína Quinase C-alfa/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Eletricidade Estática
8.
Biochem Soc Trans ; 42(6): 1477-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399557

RESUMO

Precise control of the amplitude of protein kinase C (PKC) signalling is essential for cellular homoeostasis, and disruption of this control leads to pathophysiological states such as cancer, neurodegeneration and diabetes. For conventional and novel PKC, this amplitude is meticulously tuned by multiple inputs that regulate the amount of enzyme in the cell, its ability to sense its allosteric activator diacylglycerol, and protein scaffolds that co-ordinate access to substrates. Key to regulation of the signalling output of most PKC isoenzymes is the ability of cytosolic enzyme to respond to the membrane-embedded lipid second messenger, diacylglycerol, in a dynamic range that prevents signalling in the absence of agonists but allows efficient activation in response to small changes in diacylglycerol levels. The present review discusses the regulatory inputs that control the spatiotemporal dynamics of PKC signalling, with a focus on conventional and novel PKC isoenzymes.


Assuntos
Proteína Quinase C/metabolismo , Transdução de Sinais , Regulação Alostérica , Humanos , Conformação Proteica , Proteína Quinase C/química , Sistemas do Segundo Mensageiro
9.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745372

RESUMO

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.

10.
Nat Commun ; 14(1): 7791, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057326

RESUMO

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pâncreas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fibroblastos/metabolismo , Carcinogênese/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA