Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Biol Chem ; 290(43): 25782-93, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26283787

RESUMO

Islet amyloid polypeptide (IAPP) is a 37-amino acid amyloid protein intimately associated with pancreatic islet ß-cell dysfunction and death in type II diabetes. In this study, we combine spectroscopic methods and microscopy to investigate α-helical IAPP-membrane interactions. Using light scattering and fluorescence microscopy, we observe that larger vesicles become smaller upon treatment with human or rat IAPP. Electron microscopy shows the formation of various highly curved structures such as tubules or smaller vesicles in a membrane-remodeling process, and spectrofluorometric detection of vesicle leakage shows disruption of membrane integrity. This effect is stronger for human IAPP than for the less toxic rat IAPP. From CD spectra in the presence of different-sized vesicles, we also uncover the membrane curvature-sensing ability of IAPP and find that it transitions from inducing to sensing membrane curvature when lipid negative charge is decreased. Our in vivo EM images of immunogold-labeled rat IAPP and human IAPP show both forms to localize to mitochondrial cristae, which contain not only locally curved membranes but also phosphatidylethanolamine and cardiolipin, lipids with high spontaneous negative curvature. Disruption of membrane integrity by induction of membrane curvature could apply more broadly to other amyloid proteins and be responsible for membrane damage observed in other amyloid diseases as well.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Membrana Celular/metabolismo , Dicroísmo Circular , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Microscopia de Fluorescência , Ligação Proteica , Ratos
2.
J Biol Chem ; 283(25): 17205-10, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18442979

RESUMO

Human islet amyloid polypeptide (hIAPP) misfolding is thought to play an important role in the pathogenesis of type II diabetes mellitus. It has recently been shown that membranes can catalyze the misfolding of hIAPP via an alpha-helical intermediate of unknown structure. To better understand the mechanism of membrane-mediated misfolding, we used site-directed spin labeling and EPR spectroscopy to generate a three-dimensional structural model of this membrane-bound form. We find that hIAPP forms a single alpha-helix encompassing residues 9-22. The helix is flanked by N- and C-terminal regions that do not take up a clearly detectable secondary structure and are less ordered. Residues 21 and 22 are located in a transitional region between the alpha-helical structure and C terminus and exhibit significant mobility. The alpha-helical structure presented here has important implications for membrane-mediated aggregation. Anchoring hIAPP to the membrane not only increases the local concentration but also reduces the encounter between peptides to essentially a two-dimensional process. It is significant to note that the alpha-helical membrane-bound form leaves much of an important amyloidogenic region of hIAPP (residues 20-29) exposed for misfolding. Misfolding of this and other regions is likely further aided by the low dielectric environment near the membrane that is known to promote secondary structure formation. Based upon these considerations, a structural model for membrane-mediated aggregation is discussed.


Assuntos
Amiloide/química , Membrana Celular/metabolismo , Ilhotas Pancreáticas/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Dados de Sequência Molecular , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA