Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473998

RESUMO

Interferon alpha-2b (IFN-α2b) is an essential cytokine widely used in the treatment of chronic hepatitis C and hairy cell leukemia, and serum albumin is the most abundant plasma protein with numerous physiological functions. Effective single-step aqueous biphasic system (ABS) extraction for the simultaneous purification of IFN-α2b and BSA (serum albumin protein) was developed in this work. Effects of the ionic liquid (IL)-based ABS functionalization, fluorinated ILs (FILs; [C​2C​1Im][C​4F​9SO​3] and [N​1112(OH)][C​4F​9SO​3]) vs. mere fluoro-containing IL ([C​4C​1Im][CF​3SO​3]), in combination with sucrose or [N​1112(OH)][H​2PO​4] (well-known globular protein stabilizers), or high-charge-density salt K​3PO​4 were investigated. The effects of phase pH, phase water content (%wt), phase composition (%wt), and phase volume ratio were investigated. The phase pH was found to have a significant effect on IFN-α2b and BSA partition. Experimental results show that simultaneous single-step purification was achieved with a high yield (extraction efficiency up to 100%) for both proteins and a purification factor of IFN-α2b high in the enriched IFN-α2b phase (up to 23.22) and low in the BSA-enriched phase (down to 0.00). SDS-PAGE analysis confirmed the purity of both recovered proteins. The stability and structure of IFN-α2b and BSA were preserved or even improved (FIL-rich phase) during the purification step, as evaluated by CD spectroscopy and DSC. Binding studies of IFN-α2b and BSA with the ABS phase-forming components were assessed by MST, showing the strong interaction between FILs aggregates and both proteins. In view of their biocompatibility, customizable properties, and selectivity, FIL-based ABSs are suggested as an improved purification step that could facilitate the development of biologics.


Assuntos
Líquidos Iônicos , Albumina Sérica , Humanos , Albumina Sérica/química , Líquidos Iônicos/química , Interferon-alfa/farmacologia , Água/química , Proteínas Recombinantes
2.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891953

RESUMO

This work unfolds functionalized ABSs composed of FILs ([C2C1Im][C4F9SO3] and [N1112(OH)][C4F9SO3]), mere fluoro-containing ILs ([C2C1Im][CF3SO3] and [C4C1Im][CF3SO3]), known globular protein stabilizers (sucrose and [N1112(OH)][C4F9SO3]), low-molecular-weight carbohydrate (glucose), and even high-charge density salt (K3PO4). The ternary phase diagrams were determined, stressing that FILs highly increased the ability for ABS formation. The functionalized ABSs (FILs vs. mere fluoro-containing ILs) were used to extract lysozyme (Lys). The ABSs' biphasic regions were screened in terms of protein biocompatibility, analyzing the impact of ABS phase-forming components in Lys by UV-VIS spectrophotometry, CD spectroscopy, fluorescence spectroscopy, DSC, and enzyme assay. Lys partition behavior was characterized in terms of extraction efficiency (% EE). The structure, stability, and function of Lys were maintained or improved throughout the extraction step, as evaluated by CD spectroscopy, DSC, enzyme assay, and SDS-PAGE. Overall, FIL-based ABSs are more versatile and amenable to being tuned by the adequate choice of the phase-forming components and selecting the enriched phase. Binding studies between Lys and ABS phase-forming components were attained by MST, demonstrating the strong interaction between Lys and FILs aggregates. Two of the FIL-based ABSs (30 %wt [C2C1Im][C4F9SO3] + 2 %wt K3PO4 and 30 %wt [C2C1Im][C4F9SO3] + 25 %wt sucrose) allowed the simultaneous purification of Lys and BSA in a single ABS extraction step with high yield (extraction efficiency up to 100%) for both proteins. The purity of both recovered proteins was validated by SDS-PAGE analysis. Even with a high-charge density salt, the FIL-based ABSs developed in this work seem more amenable to be tuned. Lys and BSA were purified through selective partition to opposite phases in a single FIL-based ABS extraction step. FIL-based ABSs are proposed as an improved extraction step for proteins, based on their biocompatibility, customizable properties, and selectivity.


Assuntos
Líquidos Iônicos , Muramidase , Líquidos Iônicos/química , Muramidase/química , Muramidase/isolamento & purificação , Muramidase/metabolismo , Halogenação , Água/química , Proteínas/química , Proteínas/isolamento & purificação , Animais
3.
Environ Sci Technol ; 56(9): 5898-5909, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435682

RESUMO

In recent years, the fight against climate change and the mitigation of the impact of fluorinated gases (F-gases) on the atmosphere is a global concern. Development of technologies that help to efficiently separate and recycle hydrofluorocarbons (HFCs) at the end of the refrigeration and air conditioning equipment life is a priority. The technological development is important to stimulate the F-gas capture, specifically difluoromethane (R-32) and 1,1,1,2-tetrafluoroethane (R-134a), due to their high global warming potential. In this work, the COSMO-RS method is used to analyze the solute-solvent interactions and to determine Henry's constants of R-32 and R-134a in more than 600 ionic liquids. The three most performant ionic liquids were selected on the basis of COSMO-RS calculations, and F-gas absorption equilibrium isotherms were measured using gravimetric and volumetric methods. Experimental results are in good agreement with COSMO-RS predictions, with the ionic liquid tributyl(ethyl)phosphonium diethyl phosphate, [P2444][C2C2PO4], being the salt presenting the highest absorption capacities in molar and mass units compared to salts previously tested. The other two ionic liquids selected, trihexyltetradecylphosphonium glycinate, [P66614][C2NO2], and trihexyl(tetradecyl)phosphonium 2-cyano-pyrrole, [P66614][CNPyr], may be competitive as far as their absorption capacities are concerned. Future works will be guided on evaluating the performance of these ionic liquids at an industrial scale by means of process simulations, in order to elucidate the role in process efficiency of other relevant absorbent properties such as viscosity, molar weight, or specific heat.

4.
Environ Sci Technol ; 54(19): 12784-12794, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32822151

RESUMO

The environmental impact of fluorinated gases (F-gases) necessitates the development of green technologies to mitigate them. Fluorinated ionic liquids (FIL/ILs) emerged as an alternative absorbent due to their unique and exceptional properties. In this work, a COSMO-based/Aspen Plus methodology was used to evaluate the performance of FIL/ILs as absorbents in the process scale of two F-gases: 1,1,1,2-tetrafluoroethane (R-134a) and difluoromethane (R-32). Results of the absorption column in equilibrium mode revealed that the behavior of FIL/ILs is similar under the same conditions, reaching higher efficiencies in the case of absorbing R-134a at a high F-gas partial pressure. Rate-based calculations in packing column demonstrated a kinetic control with highly viscous FIL/ILs, revealing higher performance differences between FIL/IL absorbents. The regeneration stage was also evaluated in near-industrial conditions. Operating conditions of the absorption column were optimized with a column of height 10 m and diameter ranging from 1.1 to 1.2 m at 10 bar total pressure, reaching 90% F gas recovery with an L/G range of 6-10. Finally, preliminary economic analysis revealed operating costs to recover 90% of F-gas of 70 $/ton (R-134a) and 130 $/ton (R-32) with the FIL/IL that revealed the best behavior, 1-ethyl-3-methylimidazolium triflate.


Assuntos
Líquidos Iônicos , Gases , Cinética
5.
Phys Chem Chem Phys ; 21(12): 6362-6380, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30838371

RESUMO

Fluorinated ionic liquids (FILs) are a unique family of ionic liquids with remarkable properties, including the formation of three nano-segregated domains, which are very attractive for several emerging applications. However, the amount of available experimental data to fully characterize them is very scarce. We propose a systematic methodology to build FIL transferable molecular models within the soft-SAFT framework to describe the behaviour of FILs and their mixtures. A total of 38 FILs (pyridinium- and imidazolium-based FILs conjugated with fluorinated anions such as [N(CF3SO2)2]-, [CF3SO3]-, [CF3CO2]-, [C4F9SO3]- and [C4F9CO2]-) have been modelled for this purpose using available data, paying special attention to the physical meaning of the parameters. The models are used to obtain molecular insights into the influence of the anion and cation molecular structures on the thermophysical properties of the FILs. It is concluded that the anion and anion fluorination are the leading features in the thermophysical properties investigated, as captured by soft-SAFT. Models for three FILs not included in the parametrization study were built from the transferable parameters, in excellent agreement with experimental data, underlining the robustness of the soft-SAFT approach. The methodology presented here allows a direct connection between the molecular characteristics of the FILs, the influence on their behaviour, and how this can be captured by a molecular-based equation of state. The procedure allows assembling FIL models with high predictive capabilities in an intuitive way regarding the process of parametrization from the molecular structure, allowing us to characterize their thermophysical behaviour where limited experimental data are available.

6.
Chemphyschem ; 18(15): 2012-2023, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28474438

RESUMO

Fluorinated ionic liquids (FILs) exhibit complex molecular behavior, where three different nanodomains (polar, hydrogenated nonpolar, and fluorinated nonpolar) have been identified by molecular simulations. Given the high number of possible anion/cation combinations, a theoretical tool able to describe the thermophysical properties of these compounds in a systematic, rapid, and accurate manner is highly desirable. We present here a combined experimental-theoretical methodology to obtain the phase, interface, and transport properties of the 1-alkyl-3-methylimidazolium perfluorobutanesulfonate ([Cn C1 Im][C4 F9 SO3 ]) family. In addition to providing new experimental data, an extended version of the Statistical Associating Fluid Theory (soft-SAFT) is used to describe the physicochemical behavior of the [Cn C1 Im][C4 F9 SO3 ] family. A mesoscopic molecular model is built based on the analysis of the chemical structures of these FILs, and supported by quantum chemical calculations to study the charge distribution of the anion, where only the basic physical features are considered. The resulting molecular parameters are related to the molecular weight, providing the basis for thermophysical predictions of similar compounds. The theory is also able to predict the minimum in the surface tension versus the length of the hydrogenated alkyl chain, experimentally found at n=8. The viscosity parameters are also in agreement with the free-volume calculations obtained from experiments.

7.
Langmuir ; 32(24): 6130-9, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27218210

RESUMO

We have investigated, both theoretically and experimentally, the balance between the presence of alkyl and perfluoroalkyl side chains on the surface organization and surface tension of fluorinated ionic liquids (FILs). A series of ionic liquids (ILs) composed of 1-alkyl-3-methylimidazolium cations ([CnC1im] with n = 2, 4, 6, 8, 10, or 12) combined with the perfluorobutanesulfonate anion was used. The surface tensions of the investigated liquid salts are considerably lower than those reported for non-fluorinated ionic liquids. The most surprising and striking feature is the identification, for the first time, of a minimum at n = 8 in the surface tension versus the length of the IL cation alkyl side chain. Supported by molecular dynamics (MD) simulations, it was found that this trend is a result of the competition between the two nonpolar domains (perfluorinated and aliphatic) pointing toward the gas-liquid interface, a phenomenon which occurs in ILs with perfluorinated anions. Furthermore, these ILs present the lowest surface entropy reported to date.

8.
Langmuir ; 31(4): 1283-95, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25580898

RESUMO

In this work, novel and nontoxic fluorinated ionic liquids (FILs) that are totally miscible in water and could be used in biological applications, where fluorocarbon compounds present a handicap because their aqueous solubility (water and biological fluids) is in most cases too low, have been investigated. The self-aggregation behavior of perfluorosulfonate-functionalized ionic liquids in aqueous solutions has been characterized using conductometric titration, isothermal titration calorimetry (ITC), surface tension measurements, dynamic light scattering (DLS), viscosity and density measurements, and transmission electron microscopy (TEM). Aggregation and interfacial parameters have been computed by conductimetry, calorimetry, and surface tension measurements in order to study various thermodynamic and surface properties that demonstrate that the aggregation process is entropy-driven and that the aggregation process is less spontaneous than the adsorption process. The novel perfluorosulfonate-functionalized ILs studied in this work show improved surface activity and aggregation behavior, forming distinct self-assembled structures.

9.
Phys Chem Chem Phys ; 15(41): 18138-47, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24061089

RESUMO

The subject of ionicity has been extensively discussed in the last decade, due to the importance of understanding the thermodynamic and thermophysical behaviour of ionic liquids. In our previous work, we established that ionic liquids' ionicity could be improved by the dissolution of simple inorganic salts in their milieu. In this work, a comparison between the thermophysical properties of two binary systems of ionic liquid + inorganic salt is presented. The effect of the ammonium thiocyanate salt on the ionicity of two similar ionic liquids, 1-ethyl-3-methylimidazolium ethylsulfonate and ethylsulfate, is investigated in terms of the related thermophysical properties, such as density, viscosity and ionic conductivity in the temperature range 298.15-323.15 K. In addition, spectroscopic (NMR and Raman) and molecular dynamic studies were conducted in order to better understand the interactions that occur at a molecular level. The obtained results reveal that although the two anions of the ionic liquid exhibit similar chemical structures, the presence of one additional oxygen in the ethylsulfate anion has a major impact on the thermophysical properties of the studied systems.

10.
Chem Soc Rev ; 41(14): 4966-95, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22692625

RESUMO

During the past decade, ionic-liquid-based Aqueous Biphasic Systems (ABS) have been the focus of a significant amount of research. Based on a compilation and analysis of the data hitherto reported, this critical review provides a judicious assessment of the available literature on the subject. We evaluate the quality of the data and establish the main drawbacks found in the literature. We discuss the main issues which govern the phase behaviour of ionic-liquid-based ABS, and we highlight future challenges to the field. In particular, the effect of the ionic liquid structure and the various types of salting-out agents (inorganic or organic salts, amino acids and carbohydrates) on the phase equilibria of ABS is discussed, as well as the influence of secondary parameters such as temperature and pH. More recent approaches using ionic liquids as additives or as replacements for common salts in polymer-based ABS are also presented and discussed to emphasize the expanding number of aqueous two-phase systems that can actually be obtained. Finally, we address two of the main applications of ionic liquid-based ABS: extraction of biomolecules and other added-value compounds, and their use as alternative approaches for removing and recovering ionic liquids from aqueous media.

11.
Glob Chall ; 7(1): 2200107, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618101

RESUMO

The research on porous materials for the selective capture of fluorinated gases (F-gases) is key to reduce their emissions. Here, the adsorption of difluoromethane (R-32), pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-134a) is studied in four metal-organic frameworks (MOFs: Cu-benzene-1,3,5-tricarboxylate, zeolitic imidazolate framework-8, MOF-177, and MIL-53(Al)) and in one zeolite (ZSM-5) with the aim to develop technologies for the efficient capture and separation of high global warming potential blends containing these gases. Single-component sorption equilibria of the pure gases are measured at three temperatures (283.15, 303.15, and 323.15 K) by gravimetry and correlated using the Tóth and Virial adsorption models, and selectivities toward R-410A and R-407F are determined by ideal adsorption solution theory. While at lower pressures, R-125 and R-134a are preferentially adsorbed in all materials, at higher pressures there is no selectivity, or it is shifted toward the adsorption R-32. Furthermore, at high pressures, MOF-177 shows the highest adsorption capacity for the three F-gases. The results presented here show that the utilization of MOFs, as tailored made materials, is promising for the development of new approaches for the selective capture of F-gases and for the separation of blends of these gases, which are used in commercial refrigeration.

12.
Nanomaterials (Basel) ; 12(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35683707

RESUMO

Interferon-alpha 2b (IFN-α 2b) is a therapeutic protein used for the treatment of cancer, viral infections, and auto-immune diseases. Its application is hindered by a low bioavailability and instability in the bloodstream, and the search for new strategies for a target delivery and stabilization of IFN-α 2b to improve its therapeutic efficacy is crucial. Fluorinated ionic liquids (FILs) are promising biomaterials that: (i) can form self-assembled structures; (ii) have complete miscibility in water; and (iii) can be designed to have reduced toxicity. The influence of IFN-α 2b in the aggregation behaviour of FILs and the interactions between them were investigated through conductivity and surface tension measurements, and using electron microscopic and spectroscopy techniques to study FILs feasibility as an interferon-alpha 2b delivery system. The results show that the presence of IFN-α 2b influences the aggregation behaviour of FILs and that strong interaction between the two compounds occurs. The protein might not be fully encapsulated by FILs. However, the FIL can be tailored in the future to carry IFN-α 2b by the formation of a conjugate, which prevents the aggregation of this protein. This work constitutes a first step toward the design and development of FIL-based IFN-α 2b delivery systems.

13.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671036

RESUMO

In this work, polymeric membranes functionalized with ionic liquids (ILs) and exfoliated graphene nanoplatelets (xGnP) were developed and characterized. These membranes based on graphene ionanofluids (IoNFs) are promising materials for gas separation. The stability of the selected IoNFs in the polymer membranes was determined by thermogravimetric analysis (TGA). The morphology of membranes was characterized using scanning electron microscope (SEM) and interferometric optical profilometry (WLOP). SEM results evidence that upon the small addition of xGnP into the IL-dominated environment, the interaction between IL and xGnP facilitates the migration of xGnP to the surface, while suppressing the interaction between IL and Pebax®1657. Fourier transform infrared spectroscopy (FTIR) was also used to determine the polymer-IoNF interactions and the distribution of the IL in the polymer matrix. Finally, the thermodynamic properties and phase transitions (polymer-IoNF) of these functionalized membranes were studied using differential scanning calorimetry (DSC). This analysis showed a gradual decrease in the melting point of the polyamide (PA6) blocks with a decrease in the corresponding melting enthalpy and a complete disappearance of the crystallinity of the polyether (PEO) phase with increasing IL content. This evidences the high compatibility and good mixing of the polymer and the IoNF.

14.
Nanomaterials (Basel) ; 11(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652731

RESUMO

Membrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([C2C1py][C4F9SO3]). The results show that the presence of IoNF in the MMMs significantly enhances gas permeation, yet at the expense of slightly decreasing the selectivity of the base polymer. The best results were obtained with the MMM containing 40 wt% IoNF, which led to an improved permeability of the gas of interest (PR32 = 496 barrer) with respect to that of the neat polymer (PR32= 279 barrer) with a mixed-gas separation factor of 3.0 at the highest feed R410A pressure tested. Overall, the newly fabricated IoNF-MMMs allowed the separation of the near-azeotropic R410A mixture to recover the low-GWP R32 gas, which is of great interest for the circular economy of the refrigeration sector.

15.
J Am Soc Mass Spectrom ; 32(6): 1459-1468, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33998788

RESUMO

In the search for alternatives to chlorine-containing gases, tetrafluoroethane, CF3CH2F (R134a), a widely used refrigerant gas, has been recognized as a promising substitute for dichlorodifluoromethane, CCl2F2 (R12). When R12 is replaced by R134a, the global warming potential drops from 8100 to 1430, the ozone depletion potential changes from 1 to 0, and the atmospheric lifetime decreases from 100 to 14 years. Electron interactions in the gas phase play a fundamental role in the atmospheric sciences. Here, we present a detailed study on electron-driven fragmentation pathways of CF3CH2F, in which we have investigated processes induced by both electron ionization and electron attachment. The measurements allow us to report the ion efficiency curves for ion formation in the energy range of 0 up to 25 eV. For positive ion formation, R134a dissociates into a wide assortment of ions, in which CF3+ is observed as the most abundant out of seven ions with a relative intensity above 2%. The results are supported by quantum chemical calculations based on bound state techniques, electron-impact ionization models, and electron-molecule scattering simulations, showing a good agreement. Moreover, the experimental first ionization potential was found at 13.10 ± 0.17 eV and the second at around 14.25 eV. For negative ion formation, C2F3- was detected as the only anion formed, above 8.3 eV. This study demonstrates the role of electrons in the dissociation of R134a, which is relevant for an improvement of the refrigeration processes as well as in atmospheric chemistry and plasma sciences.

16.
Chemosphere ; 216: 576-586, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30390588

RESUMO

The use of fluorinated ionic liquids (FILs) as novel materials in biological and pharmaceutical applications is an emerging research field. The knowledge of their cytotoxicity and that of 1-octanol/water partition coefficients are essential to assess their environmental risks, to estimate their toxicity and activity, or the hydrophilic/lipophilic balance, as well as to explore their properties as solvents in extraction processes or for successful drug design. The study of the cytotoxicity in four different human cell lines and the experimental measurement of the partition coefficient between 1-octanol and water (Po/w), using the slow-stirring method, were carried out for several FILs. In both studies, the effect of the cation ([C2C1Im]+, [C2C1py]+, [C4C1pyr]+, [N1112(OH)]+, or [N4444]+), the cationic alkyl side-chain length ([CnC1Im]+, with n = 2, 6, 8 or 12), and the anionic fluorinated chain length/anionic fluorinated domain size ([C4F9SO3]¯, [C8F17SO3]¯, or [N(C4F9SO3)2]¯) were analysed. The results reveal that both toxicity and partition properties are mainly influenced by the size of the cationic hydrogenated alkyl side-chain and that of the anionic fluorinated domain. The intrinsic tuneability of the FILs allows for their selection according to the lipophilic or hydrophilic character of the target biological system under consideration. The toxicity studies corroborate the biocompatible nature of some FILs tested in this work. Along, for all the FILs under study Po/w < 1.00. Accordingly, a decadic logarithm of the bioconcentration factor in fish of 0.5 would be estimated, which is below the regulatory endpoint used by regulatory agencies.


Assuntos
Halogenação , Células Endoteliais da Veia Umbilical Humana/patologia , Líquidos Iônicos/efeitos adversos , Queratinócitos/patologia , Octanóis/química , Água/química , Células CACO-2 , Sobrevivência Celular , Células Cultivadas , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Queratinócitos/efeitos dos fármacos
17.
Front Chem ; 7: 450, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281812

RESUMO

This work highlights unexpected, not so well known responses of ionic liquids and ionic liquid-containing systems, which are reported in a collective manner, as a short review. Examples include: (i) Minima in the temperature dependence of the isobaric thermal expansion coefficient of some ILs; (ii) Viscosity Minima in binary mixtures of IL + Molecular solvents; (iii) Anomalies in the surface tension within a family of ILs; (iv) The constancy among IL substitution of Cp/Vm at and around room temperature; (v) ILs as glass forming liquids; (vi) Alternate odd-even side alkyl chain length effects; (vii) Absolute negative pressures in ILs and IL-containing systems; (viii) Reversed-charged ionic liquid pairs; (ix) LCST immiscibility behavior in IL + solvent systems.

18.
J Chromatogr A ; 1189(1-2): 302-13, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18243230

RESUMO

A procedure for determination of adsorption isotherms in simulated moving-bed (SMB) chromatography is presented. The parameters of a prescribed adsorption isotherm model and rate constants are derived using a hybrid inverse method, which incorporates overloaded band profiles of the racemic mixture and breakthrough data from a single frontal experiment. The latter are included to reduce the uncertainty on the estimated saturation capacity, due to the dilution of the chromatograms with respect to the injected concentrations. The adsorption isotherm model is coupled with an axially dispersed flow model with finite mass-transfer rate to describe the experimental band profiles. The numerical constants of the isotherm model are tuned so that the calculated and measured band profiles match as much as possible. The accuracy of the isotherm model is then checked against the cyclic steady state (CSS) of the target SMB process, which is readily and cheaply obtained experimentally on a single-column set-up. This experiment is as expensive and time consuming as just a few breakthrough experiments. If necessary, the isotherm parameters are adjusted by applying the inverse method to the experimental CSS concentration profile. The method is successfully applied to determine the adsorption isotherms of Trögers base enantiomers on Chiralpak AD/methanol system. The results indicate that the proposed inverse method offers a reliable and quick approach to determine the competitive adsorption isotherms for a specific SMB separation.


Assuntos
Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Modelos Teóricos , Reprodutibilidade dos Testes , Estereoisomerismo , Termodinâmica
19.
J Chromatogr A ; 1189(1-2): 292-301, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18035365

RESUMO

An automated on-line enantiomeric analysis system comprising an analytical HPLC set-up with two UV detectors sharing the same light source has been employed to monitor the internal composition profile in chiral simulated moving bed chromatography. This monitoring scheme does not use a polarimeter. Using a sampling interface placed between two SMB columns, effluent samples are directed onto a high-efficiency analytical column at a sampling rate faster than the overall dynamics of the preparative unit to achieve on-line enantiomeric analysis of the composition profile. The other UV detector is placed in the SMB loop before the fraction collector to provide instantaneous measurement of the total enantiomeric concentration. The feasibility and effectiveness of the on-line enantiomeric monitoring scheme were assessed experimentally on the separation of Tröger's base racemate, using Chiralpak AD as stationary phase and methanol as eluent. It was found that robust monitoring of the concentration profiles of the individual enantiomers is best achieved when the enantiomeric purity obtained from the peak areas of the on-line enantiomer analysis chromatograms is combined with the on-line UV measurement of total enantiomeric concentration. The accuracy and robustness of the proposed on-line enantiomeric monitoring system open up promising perspectives for process control and dynamic optimization of the SMB.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Modelos Teóricos , Reprodutibilidade dos Testes , Estereoisomerismo
20.
J Chromatogr A ; 1180(1-2): 42-52, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18154982

RESUMO

A two-column simulated moving-bed system has been developed for binary separation. The system combines a flexible node design, robust pump configuration, and cyclic flow-rate modulation to exploit the benefits of simulated counter-current operation. The feasibility of the proposed two-column system is demonstrated on the linear separation of two nucleosides by reversed phase. Emphasis is given to the potentialities of the process compared to single-column batch chromatography with recycling for the same amount of stationary phase. The performance of the proposed two-column process is verified with laboratory-scale experiments and detailed simulations for different difficulties in separation and desorbent-to-feed ratios.


Assuntos
Cromatografia Líquida/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA