Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 126(2): 308-319, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33005043

RESUMO

Little is known about the extent of genetic connectivity along continuous coastlines in manta rays, or whether site visitation is influenced by relatedness. Such information is pertinent to defining population boundaries and understanding localized dispersal patterns and behaviour. Here, we use 3057 genome-wide single-nucleotide polymorphisms (SNPs) to evaluate population genetic structure and assess the levels of relatedness at aggregation sites of reef manta rays (Mobula alfredi) in southern Mozambique (n = 114). Contrary to indications of limited dispersal along the southern Mozambican coastline inferred from photo-identification and telemetry studies, our results show no evidence of population structure (non-significant FST < 0.001) for M. alfredi along this coast. We also found no evidence that individuals sampled at the same site were more related than expected by chance for males, females or across both sexes, suggesting that kinship may not influence visitation patterns at these sites. We estimated the effective population size (Ne) of this population to be 375 (95% CI = 369-380). Comparison to a distant eastern Indian Ocean site (Western Australia, n = 15) revealed strong genetic differentiation between Mozambique and Western Australia (FST = 0.377), identifying the Indian Ocean basin as a barrier to dispersal. Our findings show that genetic connectivity in M. alfredi extends for several hundred kilometres along continuous coastlines. We therefore recommend that the population in Mozambique be considered a discrete management unit, and future conservation plans should prioritize integrated strategies along the entire southern coastline.


Assuntos
Genética Populacional , Polimorfismo de Nucleotídeo Único , Rajidae , Animais , Feminino , Genoma , Masculino , Moçambique , Rajidae/genética
2.
J Fish Biol ; 96(3): 835-840, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31925780

RESUMO

The known distribution of manta rays in Australian waters is patchy, with records primarily centred around tourism hotspots. We collated 11,614 records of Mobula alfredi from photo-ID databases (n = 10,715), aerial surveys (n = 378) and online reports (n = 521). The study confirms an uninterrupted coastal distribution from north of 26°S and 31°S on the west and east coasts, respectively. More southerly M. alfredi records relate to warm-water events with a southernmost extent at 34°S. Coastal sightings of Mobula birostris were rare (n = 32), likely reflecting a preference for offshore waters, but encompass a wider latitudinal extent than M. alfredi of 10-40°S.


Assuntos
Distribuição Animal , Elasmobrânquios/fisiologia , Animais , Austrália , Oceanos e Mares
3.
Sci Adv ; 8(33): eabo1754, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984887

RESUMO

Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.

4.
PeerJ ; 9: e11992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513330

RESUMO

Manta rays forage for zooplankton in tropical and subtropical marine environments, which are generally nutrient-poor. Feeding often occurs at predictable locations where these large, mobile cartilaginous fishes congregate to exploit ephemeral productivity hotspots. Investigating the zooplankton dynamics that lead to such feeding aggregations remains a key question for understanding their movement ecology. The aim of this study is to investigate the feeding environment at the largest known aggregation for reef manta rays Mobula alfredi in the world. We sampled zooplankton throughout the tidal cycle, and recorded M. alfredi activity and behaviour, alongside environmental variables at Hanifaru Bay, Maldives. We constructed generalised linear models to investigate possible relationships between zooplankton dynamics, environmental parameters, and how they influenced M. alfredi abundance, behaviour, and foraging strategies. Zooplankton biomass changed rapidly throughout the tidal cycle, and M. alfredi feeding events were significantly related to high zooplankton biomass. Mobula alfredi switched from non-feeding to feeding behaviour at a prey density threshold of 53.7 mg dry mass m-3; more than double the calculated density estimates needed to theoretically meet their metabolic requirements. The highest numbers of M. alfredi observed in Hanifaru Bay corresponded to when they were engaged in feeding behaviour. The community composition of zooplankton was different when M. alfredi was feeding (dominated by copepods and crustaceans) compared to when present but not feeding (more gelatinous species present than in feeding samples). The dominant zooplankton species recorded was Undinula vulgaris. This is a large-bodied calanoid copepod species that blooms in oceanic waters, suggesting offshore influences at the site. Here, we have characterised aspects of the feeding environment for M. alfredi in Hanifaru Bay and identified some of the conditions that may result in large aggregations of this threatened planktivore, and this information can help inform management of this economically important marine protected area.

5.
Ecol Evol ; 11(10): 5606-5623, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026033

RESUMO

Mutualism is a form of symbiosis whereby both parties benefit from the relationship. An example is cleaning symbiosis, which has been observed in terrestrial and marine environments. The most recognized form of marine cleaning symbiosis is that of cleaner fishes and their clients.Cleaner species set up cleaning stations on the reef, and other species seek out their services. However, it is not well understood how the presence of cleaning stations influence movements of large highly mobile species. We examined the role of cleaning stations as a driver of movement and habitat use in a mobile client species.Here, we used a combination of passive acoustic telemetry and in-water surveys to investigate cleaning station attendance by the reef manta ray Mobula alfredi. We employed a novel approach in the form of a fine-scale acoustic receiver array set up around a known cleaning area and tagged 42 rays. Within the array, we mapped structural features, surveyed the distribution of cleaner wrasse, and observed the habitat use of the rays.We found manta ray space use was significantly associated with blue-streak cleaner wrasse Labroides dimidiatus distribution and hard coral substrate. Cleaning interactions dominated their habitat use at this site, taking precedence over other life history traits such as feeding and courtship.This study has demonstrated that cleaning symbiosis is a driver for highly mobile, and otherwise pelagic, species to visit inshore reef environments. We suggest that targeted and long-term use of specific cleaning stations reflects manta rays having a long-term memory and cognitive map of some shallow reef environments where quality cleaning is provided. We hypothesize that animals prefer cleaning sites in proximity to productive foraging regions.

6.
PLoS One ; 14(12): e0225681, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31825970

RESUMO

Increasing vessel traffic in the marine environment due to commercial and recreational activities has amplified the number of conflicts with marine animals. However, there are limited multi-year observations of the healing rate of marine animals following vessel strike. Here we document the healing rate of a reef manta ray Mobula alfredi, following lacerations caused by a propeller along the pectoral fin. We demonstrate a high healing capacity, with wound length following a negative exponential curve over time. Lacerations healed to 5% of the initial wound length (i.e. 95% closure) within 295 days. The wounds appeared to stabilise at this point as observed more than three years following the incident and resulted in a distinctive scarring pattern. Examination of an extensive photo-identification catalogue of manta rays from the Ningaloo Coast World Heritage Area showed that the scarring pattern occurs more frequently than previously recognised, as the wounds had been previously attributed to failed predation attempts. This study provides baseline information for wound healing from vessel strike in reef manta rays and indirect evidence for increased vessel strikes on manta rays within the Ningaloo Coast World Heritage Area. We discuss the implication for spatial and behavioural management of vessels around manta rays.


Assuntos
Acidentes de Trânsito , Navios , Rajidae/lesões , Cicatrização/fisiologia , Ferimentos e Lesões/veterinária , Animais , Cicatriz/epidemiologia , Cicatriz/etiologia , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Monitorização de Parâmetros Ecológicos/métodos , Rajidae/fisiologia , Austrália Ocidental , Ferimentos e Lesões/complicações , Ferimentos e Lesões/epidemiologia
7.
BMC Res Notes ; 12(1): 233, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31010433

RESUMO

OBJECTIVE: Limited sample sizes are often a problem for species of conservation concern when using genetic tools to make population assessments. Lack of analytical power from small sample sizes can be compensated for by use of a large marker set. Here we report on development and characterization of 17 novel microsatellite markers for the reef manta ray (Mobula alfredi). RESULTS: Loci were screened on 60 reef manta rays (M. alfredi) sampled from the east coast of Australia. The number of alleles per locus varied from 2 to 13 with observed heterozygosities ranging between 0.300 and 0.917. The development of these 17 additional markers increases the total number of microsatellite markers available for this species to 27.


Assuntos
Loci Gênicos , Genoma , Repetições de Microssatélites , Rajidae/genética , Alelos , Animais , Austrália , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Marcadores Genéticos , Genética Populacional , Heterozigoto
8.
PLoS One ; 11(5): e0153393, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144343

RESUMO

Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years) sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.


Assuntos
Recifes de Corais , Comportamento Alimentar , Comportamento Predatório , Rajidae/fisiologia , Movimentos da Água , Animais , Austrália , Zooplâncton
9.
J Plankton Res ; 37(2): 352-362, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25814777

RESUMO

Large planktivores require high-density prey patches to make feeding energetically viable. This is a major challenge for species living in tropical and subtropical seas, such as whale sharks Rhincodon typus. Here, we characterize zooplankton biomass, size structure and taxonomic composition from whale shark feeding events and background samples at Mafia Island, Tanzania. The majority of whale sharks were feeding (73%, 380 of 524 observations), with the most common behaviour being active surface feeding (87%). We used 20 samples collected from immediately adjacent to feeding sharks and an additional 202 background samples for comparison to show that plankton biomass was ∼10 times higher in patches where whale sharks were feeding (25 vs. 2.6 mg m-3). Taxonomic analyses of samples showed that the large sergestid Lucifer hanseni (∼10 mm) dominated while sharks were feeding, accounting for ∼50% of identified items, while copepods (<2 mm) dominated background samples. The size structure was skewed towards larger animals representative of L.hanseni in feeding samples. Thus, whale sharks at Mafia Island target patches of dense, large, zooplankton dominated by sergestids. Large planktivores, such as whale sharks, which generally inhabit warm oligotrophic waters, aggregate in areas where they can feed on dense prey to obtain sufficient energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA