Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
J Exp Bot ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572950

RESUMO

The photosynthetic acclimation of boreal evergreen conifers is controlled by regulatory and photoprotective mechanisms that allow conifers to cope with extreme environmental changes. However, the underlying dynamics of photosystem II (PSII) and photosystem I (PSI) remain unresolved. Here, we investigated the dynamics of PSII and PSI during the spring recovery of photosynthesis in Pinus sylvestris and Picea abies using a combination of chlorophyll-a fluorescence, P700 difference absorbance measurements, and quantification of key thylakoid protein abundances. In particular, we derived a new set of PSI quantum yield equations, correcting for the effects of PSI photoinhibition. Using the corrected equations, we found that the seasonal dynamics of PSII and PSI photochemical yields remained largely in balance, despite substantial seasonal changes in the stoichiometry of PSII and PSI core complexes driven by PSI photoinhibition. Similarly, the previously reported seasonal upregulation of cyclic electron flow was no longer evident, after accounting for PSI photoinhibition. Overall, our results emphasize the importance of considering the dynamics of PSII and PSI to elucidate the seasonal acclimation of photosynthesis in overwintering evergreens. Beyond the scope of conifers, our corrected PSI quantum yields expand the toolkit for future studies aimed at elucidating the dynamic regulation of PSI.

2.
Microb Cell Fact ; 23(1): 188, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951789

RESUMO

BACKGROUND: Advancing the engineering of photosynthesis-based prokaryotic cell factories is important for sustainable chemical production and requires a deep understanding of the interplay between bioenergetic and metabolic pathways. Rearrangements in photosynthetic electron flow to increase the efficient use of the light energy for carbon fixation must be balanced with a strong carbon sink to avoid photoinhibition. In the cyanobacterium Synechocystis sp. PCC 6803, the flavodiiron protein Flv3 functions as an alternative electron acceptor of photosystem I and represents an interesting engineering target for reorganizing electron flow in attempts to enhance photosynthetic CO2 fixation and increase production yield. RESULTS: We have shown that inactivation of Flv3 in engineered sucrose-excreting Synechocystis (S02:Δflv3) induces a transition from photoautotrophic sucrose production to mixotrophic growth sustained by sucrose re-uptake and the formation of intracellular carbon sinks such as glycogen and polyhydroxybutyrate. The growth of S02:Δflv3 exceeds that of the sucrose-producing strain (S02) and demonstrates unforeseen proteomic and metabolomic changes over the course of the nine-day cultivation. In the absence of Flv3, a down-regulation of proteins related to photosynthetic light reactions and CO2 assimilation occurred concomitantly with up-regulation of those related to glycolytic pathways, before any differences in sucrose production between S02 and S02:Δflv3 strains were observed. Over time, increased sucrose degradation in S02:Δflv3 led to the upregulation of respiratory pathway components, such as the plastoquinone reductase complexes NDH-11 and NDH-2 and the terminal respiratory oxidases Cyd and Cox, which transfer electrons to O2. While glycolytic metabolism is significantly up-regulated in S02:Δflv3 to provide energy for the cell, the accumulation of intracellular storage compounds and the increase in respiration serve as indirect sinks for photosynthetic electrons. CONCLUSIONS: Our results show that the presence of strong carbon sink in the engineered sucrose-producing Synechocystis S02 strain, operating under high light, high CO2 and salt stress, cannot compensate for the lack of Flv3 by directly balancing the light transducing source and carbon fixing sink reactions. Instead, the cells immediately sense the imbalance, leading to extensive reprogramming of cellular bioenergetic, metabolic and ion transport pathways that favor mixotrophic growth rather than enhancing photoautotrophic sucrose production.


Assuntos
Proteínas de Bactérias , Fotossíntese , Sacarose , Synechocystis , Synechocystis/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Sacarose/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Carbono/metabolismo , Transporte de Elétrons , Proteômica , Dióxido de Carbono/metabolismo
3.
New Phytol ; 237(1): 126-139, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36128660

RESUMO

The model heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a typical example of a multicellular organism capable of simultaneously performing oxygenic photosynthesis in vegetative cells and O2 -sensitive N2 -fixation inside heterocysts. The flavodiiron proteins have been shown to participate in photoprotection of photosynthesis by driving excess electrons to O2 (a Mehler-like reaction). Here, we performed a phenotypic and biophysical characterization of Anabaena mutants impaired in vegetative-specific Flv1A and Flv3A in order to address their physiological relevance in the bioenergetic processes occurring in diazotrophic Anabaena under variable CO2 conditions. We demonstrate that both Flv1A and Flv3A are required for proper induction of the Mehler-like reaction upon a sudden increase in light intensity, which is likely important for the activation of carbon-concentrating mechanisms and CO2 fixation. Under ambient CO2 diazotrophic conditions, Flv3A is responsible for moderate O2 photoreduction, independently of Flv1A, but only in the presence of Flv2 and Flv4. Strikingly, the lack of Flv3A resulted in strong downregulation of the heterocyst-specific uptake hydrogenase, which led to enhanced H2 photoproduction under both oxic and micro-oxic conditions. These results reveal a novel regulatory network between the Mehler-like reaction and the diazotrophic metabolism, which is of great interest for future biotechnological applications.


Assuntos
Anabaena , Dióxido de Carbono , Dióxido de Carbono/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anabaena/genética , Anabaena/metabolismo , Oxigênio/metabolismo , Fotossíntese/fisiologia
4.
Plant Physiol ; 189(1): 112-128, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35166847

RESUMO

Reactive oxygen species (ROS) are generated in electron transport processes of living organisms in oxygenic environments. Chloroplasts are plant bioenergetics hubs where imbalances between photosynthetic inputs and outputs drive ROS generation upon changing environmental conditions. Plants have harnessed various site-specific thylakoid membrane ROS products into environmental sensory signals. Our current understanding of ROS production in thylakoids suggests that oxygen (O2) reduction takes place at numerous components of the photosynthetic electron transfer chain (PETC). To refine models of site-specific O2 reduction capacity of various PETC components in isolated thylakoids of Arabidopsis thaliana, we quantified the stoichiometry of oxygen production and consumption reactions associated with hydrogen peroxide (H2O2) accumulation using membrane inlet mass spectrometry and specific inhibitors. Combined with P700 spectroscopy and electron paramagnetic resonance spin trapping, we demonstrate that electron flow to photosystem I (PSI) is essential for H2O2 accumulation during the photosynthetic linear electron transport process. Further leaf disc measurements provided clues that H2O2 from PETC has a potential of increasing mitochondrial respiration and CO2 release. Based on gas exchange analyses in control, site-specific inhibitor-, methyl viologen-, and catalase-treated thylakoids, we provide compelling evidence of no contribution of plastoquinone pool or cytochrome b6f to chloroplastic H2O2 accumulation. The putative production of H2O2 in any PETC location other than PSI is rapidly quenched and therefore cannot function in H2O2 translocation to another cellular location or in signaling.


Assuntos
Arabidopsis , Tilacoides , Arabidopsis/metabolismo , Transporte de Elétrons , Elétrons , Peróxido de Hidrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tilacoides/metabolismo
5.
Plant Physiol ; 190(1): 698-713, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35736511

RESUMO

Reversible thylakoid protein phosphorylation provides most flowering plants with dynamic acclimation to short-term changes in environmental light conditions. Here, through generating Serine/Threonine protein kinase 7 (STN7)-depleted mutants in the moss Physcomitrella (Physcomitrium patens), we identified phosphorylation targets of STN7 kinase and their roles in short- and long-term acclimation of the moss to changing light conditions. Biochemical and mass spectrometry analyses revealed STN7-dependent phosphorylation of N-terminal Thr in specific Light-Harvesting Complex II (LHCII) trimer subunits (LHCBM2 and LHCBM4/8) and provided evidence that phospho-LHCBM accumulation is responsible for the assembly of two distinct Photosystem I (PSI) supercomplexes (SCs), both of which are largely absent in STN7-depleted mutants. Besides the canonical state transition complex (PSI-LHCI-LHCII), we isolated the larger moss-specific PSI-Large (PSI-LHCI-LHCB9-LHCII) from stroma-exposed thylakoids. Unlike PSI-LHCI-LHCII, PSI-Large did not demonstrate short-term dynamics for balancing the distribution of excitation energy between PSII and PSI. Instead, PSI-Large contributed to a more stable increase in PSI antenna size in Physcomitrella, except under prolonged high irradiance. Additionally, the STN7-depleted mutants revealed altered light-dependent phosphorylation of a monomeric antenna protein, LHCB6, whose phosphorylation displayed a complex regulation by multiple kinases. Collectively, the unique phosphorylation plasticity and dynamics of Physcomitrella monomeric LHCB6 and trimeric LHCBM isoforms, together with the presence of PSI SCs with different antenna sizes and responsiveness to light changes, reflect the evolutionary position of mosses between green algae and vascular plants, yet with clear moss-specific features emphasizing their adaptation to terrestrial low-light environments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Fosforilação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas Serina-Treonina Quinases , Serina/metabolismo , Treonina/metabolismo
6.
Plant Physiol ; 189(3): 1204-1219, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35512089

RESUMO

Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Adaptação Fisiológica , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Tilacoides/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(30): 17499-17509, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32690715

RESUMO

Coping of evergreen conifers in boreal forests with freezing temperatures on bright winter days puts the photosynthetic machinery in great risk of oxidative damage. To survive harsh winter conditions, conifers have evolved a unique but poorly characterized photoprotection mechanism, a sustained form of nonphotochemical quenching (sustained NPQ). Here we focused on functional properties and underlying molecular mechanisms related to the development of sustained NPQ in Norway spruce (Picea abies). Data were collected during 4 consecutive years (2016 to 2019) from trees growing in sun and shade habitats. When day temperatures dropped below -4 °C, the specific N-terminally triply phosphorylated LHCB1 isoform (3p-LHCII) and phosphorylated PSBS (p-PSBS) could be detected in the thylakoid membrane. Development of sustained NPQ coincided with the highest level of 3p-LHCII and p-PSBS, occurring after prolonged coincidence of bright winter days and temperatures close to -10 °C. Artificial induction of both the sustained NPQ and recovery from naturally induced sustained NPQ provided information on differential dynamics and light-dependence of 3p-LHCII and p-PSBS accumulation as prerequisites for sustained NPQ. Data obtained collectively suggest three components related to sustained NPQ in spruce: 1) Freezing temperatures induce 3p-LHCII accumulation independently of light, which is suggested to initiate destacking of appressed thylakoid membranes due to increased electrostatic repulsion of adjacent membranes; 2) p-PSBS accumulation is both light- and temperature-dependent and closely linked to the initiation of sustained NPQ, which 3) in concert with PSII photoinhibition, is suggested to trigger sustained NPQ in spruce.


Assuntos
Fotossíntese , Picea/fisiologia , Estações do Ano , Proteínas das Membranas dos Tilacoides/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Meio Ambiente , Complexos de Proteínas Captadores de Luz/metabolismo , Noruega , Fosforilação , Espectrometria de Massas em Tandem , Proteínas das Membranas dos Tilacoides/química , Árvores
8.
Plant Cell Environ ; 45(10): 2954-2971, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916195

RESUMO

Photosynthetic light reactions require strict regulation under dynamic environmental conditions. Still, depending on environmental constraints, photoinhibition of Photosystem (PSII) or PSI occurs frequently. Repair of photodamaged PSI, in sharp contrast to that of PSII, is extremely slow and leads to a functional imbalance between the photosystems. Slow PSI recovery prompted us to take advantage of the PSI-specific photoinhibition treatment and investigate whether the imbalance between functional PSII and PSI leads to acclimation of photosynthesis to PSI-limited conditions, either by short-term or long-term acclimation mechanisms as tested immediately after the photoinhibition treatment or after 24 h recovery in growth conditions, respectively. Short-term acclimation mechanisms were induced directly upon inhibition, including thylakoid protein phosphorylation that redirects excitation energy to PSI as well as changes in the feedback regulation of photosynthesis, which relaxed photosynthetic control and excitation energy quenching. Longer-term acclimation comprised reprogramming of the stromal redox system and an increase in ATP synthase and Cytochrome b6 f abundance. Acclimation to PSI-limited conditions restored the CO2 assimilation capacity of plants without major PSI repair. Response to PSI inhibition demonstrates that plants efficiently acclimate to changes occurring in the photosynthetic apparatus, which is likely a crucial component in plant acclimation to adverse environmental conditions.


Assuntos
Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Aclimatação , Transporte de Elétrons , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plantas/metabolismo , Tilacoides/metabolismo
9.
Plant J ; 101(5): 1198-1220, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31648387

RESUMO

Correct chloroplast development and function require co-ordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast's needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal Small MutS-Related (SMR) domain, is involved in integrating multiple developmental and stress-related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signalling pathways. Here we show that following perturbation of chloroplast protein homeostasis: (i) by growth in lincomycin-containing medium; or (ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21-1 and prpl11-1) or plastid protein import and folding (cphsc70-1), GUN1 influences NEP-dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Proteostase/genética , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Cotilédone/genética , Cotilédone/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Transporte Proteico , Plântula/genética , Plântula/metabolismo
10.
Plant Physiol ; 183(1): 67-79, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198308

RESUMO

Despite the ecological relevance of diatoms, many aspects of their photosynthetic machinery remain poorly understood. Diatoms differ from the green lineage of oxygenic organisms by their photosynthetic pigments and light-harvesting complex (Lhc) proteins, the latter of which are also called fucoxanthin-chlorophyll proteins (FCP). These are composed of three groups of proteins: Lhcf as the main group, Lhcr that are PSI associated, and Lhcx that are involved in photoprotection. The FCP complexes are assembled in trimers and higher oligomers. Several studies have investigated the biochemical properties of purified FCP complexes, but limited knowledge is available about their interaction with the photosystem cores. In this study, isolation of stable supercomplexes from the centric diatom Thalassiosira pseudonana was achieved. To preserve in vivo structure, the separation of thylakoid complexes was performed by native PAGE and sucrose density centrifugation. Different subpopulations of PSI and PSII supercomplexes were isolated and their subunits identified. Analysis of Lhc antenna composition identified Lhc(s) specific for either PSI (Lhcr 1, 3, 4, 7, 10-14, and Lhcf10) or PSII (Lhcf 1-7, 11, and Lhcr2). Lhcx6_1 was reproducibly found in PSII supercomplexes, whereas its association with PSI was unclear. No evidence was found for the interaction between photosystems and higher oligomeric FCPs, comprising Lhcf8 as the main component. Although the subunit composition of the PSII supercomplexes in comparison with that of the trimeric FCP complexes indicated a close mutual association, the higher oligomeric pool is only weakly associated with the photosystems, albeit its abundance in the thylakoid membrane.


Assuntos
Diatomáceas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Diatomáceas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Frutas/genética , Frutas/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Locos de Características Quantitativas/genética , Relação Estrutura-Atividade , Tilacoides/metabolismo
11.
Plant Physiol ; 182(2): 1161-1181, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31659127

RESUMO

Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Botrytis/imunologia , Senescência Celular/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Proteína Fosfatase 2/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Senescência Celular/fisiologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Resistência à Doença/imunologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mutação , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/genética , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
12.
Microb Cell Fact ; 20(1): 130, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246263

RESUMO

BACKGROUND: Synechocystis sp. PCC 6803 provides a well-established reference point to cyanobacterial metabolic engineering as part of basic photosynthesis research, as well as in the development of next-generation biotechnological production systems. This study focused on expanding the current knowledge on genomic integration of expression constructs in Synechocystis, targeting a range of novel sites in the chromosome and in the native plasmids, together with established loci used in literature. The key objective was to obtain quantitative information on site-specific expression in reference to replicon copy numbers, which has been speculated but never compared side by side in this host. RESULTS: An optimized sYFP2 expression cassette was successfully integrated in two novel sites in Synechocystis chromosome (slr0944; sll0058) and in all four endogenous megaplasmids (pSYSM/slr5037-slr5038; pSYSX/slr6037; pSYSA/slr7023; pSYSG/slr8030) that have not been previously evaluated for the purpose. Fluorescent analysis of the segregated strains revealed that the expression levels between the megaplasmids and chromosomal constructs were very similar, and reinforced the view that highest expression in Synechocystis can be obtained using RSF1010-derived replicative vectors or the native small plasmid pCA2.4 evaluated in comparison. Parallel replicon copy number analysis by RT-qPCR showed that the expression from the alternative loci is largely determined by the gene dosage in Synechocystis, thereby confirming the dependence formerly proposed based on literature. CONCLUSIONS: This study brings together nine different integrative loci in the genome of Synechocystis to demonstrate quantitative differences between target sites in the chromosome, the native plasmids, and a RSF1010-based replicative expression vector. To date, this is the most comprehensive comparison of alternative integrative sites in Synechocystis, and provides the first direct reference between expression efficiency and replicon gene dosage in the context. In the light of existing literature, the findings support the view that the small native plasmids can be notably more difficult to target than the chromosome or the megaplasmids, and that the RSF1010-derived vectors may be surprisingly well maintained under non-selective culture conditions in this cyanobacterial host. Altogether, the work broadens our views on genomic integration and the rational use of different integrative loci versus replicative plasmids, when aiming at expressing heterologous genes in Synechocystis.


Assuntos
Cromossomos Bacterianos/genética , Expressão Gênica , Plasmídeos , Synechocystis/genética , Engenharia Genética , Recombinação Genética , Transformação Bacteriana
13.
Physiol Plant ; 173(1): 305-320, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34145600

RESUMO

Photosynthetic cyanobacteria are exposed to rapid changes in light intensity in their natural habitats, as well as in photobioreactors. To understand the effects of such fluctuations on Synechocystis sp. PCC 6803, the global proteome of cells grown under a fluctuating light condition (low background light interrupted with high light pulses) was compared to the proteome of cells grown under constant light with concomitant acclimation of cells to low CO2 level. The untargeted global proteome of Synechocystis sp. PCC 6803 was analyzed by data-dependent acquisition (DDA), which relies on the high mass accuracy and sensitivity of orbitrap-based tandem mass spectrometry. In addition, a targeted selected reaction monitoring (SRM) approach was applied to monitor the proteomic changes in a strain lacking flavodiiron proteins Flv1 and Flv3. This strain is characterized by impaired growth and photosynthetic activity under fluctuating light. An obvious reprogramming of cell metabolism was observed in this study and was compared to a previous transcriptional analysis performed under the same fluctuating light regime. Cyanobacterial responses to fluctuating light correlated at mRNA and protein levels to some extent, but discrepancies indicate that several proteins are post-transcriptionally regulated (affecting observed protein abundances). The data suggest that Synechocystis sp. PCC 6803 maintain higher nitrogen assimilation, serving as an electron valve, for long-term acclimation to fluctuating light upon CO2 step-down. Although Flv1 and Flv3 are known to be crucial for the cells at the onset of illumination, the flavodiiron proteins, as well as components of carbon assimilation pathways, were less abundant under fluctuating light.


Assuntos
Synechocystis , Proteínas de Bactérias/metabolismo , Dióxido de Carbono , Luz , Fotossíntese , Proteômica , Synechocystis/metabolismo
14.
Physiol Plant ; 173(2): 507-513, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33709388

RESUMO

NordAqua is a multidisciplinary Nordic Center of Excellence funded by NordForsk Bioeconomy program (2017-2022). The research center promotes Blue Bioeconomy and endeavours to reform the use of natural resources in a environmentally sustainable way. In this short communication, we summarize particular outcomes of the consortium. The key research progress of NordAqua includes (1) improving of photosynthetisis, (2) developing novel photosynthetic cell factories that function in a "solar-driven direct CO2 capture to target bioproducts" mode, (3) promoting the diversity of Nordic cyanobacteria and algae as an abundant and resilient alternative for less sustainable forest biomass and for innovative production of biochemicals, and (4) improving the bio-based wastewater purification and nutrient recycling technologies to provide new tools for integrative circular economy platforms.


Assuntos
Fotossíntese , Biomassa
15.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360890

RESUMO

The thylakoid lumen houses proteins that are vital for photosynthetic electron transport, including water-splitting at photosystem (PS) II and shuttling of electrons from cytochrome b6f to PSI. Other lumen proteins maintain photosynthetic activity through biogenesis and turnover of PSII complexes. Although all lumen proteins are soluble, these known details have highlighted interactions of some lumen proteins with thylakoid membranes or thylakoid-intrinsic proteins. Meanwhile, the functional details of most lumen proteins, as well as their distribution between the soluble and membrane-associated lumen fractions, remain unknown. The current study isolated the soluble free lumen (FL) and membrane-associated lumen (MAL) fractions from Arabidopsis thaliana, and used gel- and mass spectrometry-based proteomics methods to analyze the contents of each proteome. These results identified 60 lumenal proteins, and clearly distinguished the difference between the FL and MAL proteomes. The most abundant proteins in the FL fraction were involved in PSII assembly and repair, while the MAL proteome was enriched in proteins that support the oxygen-evolving complex (OEC). Novel proteins, including a new PsbP domain-containing isoform, as well as several novel post-translational modifications and N-termini, are reported, and bi-dimensional separation of the lumen proteome identified several protein oligomers in the thylakoid lumen.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membranas Intracelulares/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Proteoma , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Espectrometria de Massas/métodos , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Filogenia , Processamento de Proteína Pós-Traducional , Proteômica/métodos
16.
Plant J ; 97(6): 1061-1072, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30488561

RESUMO

Natural growth environments commonly include fluctuating conditions that can disrupt the photosynthetic energy balance and induce photoinhibition through inactivation of the photosynthetic apparatus. Photosystem II (PSII) photoinhibition is efficiently reversed by the PSII repair cycle, whereas photoinhibited photosystem I (PSI) recovers much more slowly. In the current study, treatment of the Arabidopsis thaliana mutant proton gradient regulation 5 (pgr5) with excess light was used to compromise PSI functionality in order to investigate the impact of photoinhibition and subsequent recovery on photosynthesis and carbon metabolism. The negative impact of PSI photoinhibition on CO2 fixation was especially deleterious under low irradiance. Impaired starch accumulation after PSI photoinhibition was reflected in reduced respiration in the dark, but this was not attributed to impaired sugar synthesis. Normal chloroplast and mitochondrial metabolisms were shown to recover despite the persistence of substantial PSI photoinhibition for several days. The results of this study indicate that the recovery of PSI function involves the reorganization of the light-harvesting antennae, and suggest a pool of surplus PSI that can be recruited to support photosynthesis under demanding conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Metabolismo dos Carboidratos , Cloroplastos/metabolismo , Luz , Mitocôndrias/metabolismo , Mutação , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Amido/metabolismo
17.
Plant Cell Physiol ; 61(6): 1168-1180, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32277833

RESUMO

In green plants, photosystem II (PSII) forms multisubunit supercomplexes (SCs) containing a dimeric core and light-harvesting complexes (LHCs). In this study, we show that Arabidopsis thaliana PsbP-like protein 1 (PPL1) is involved in the assembly of the PSII SCs and is required for adaptation to changing light intensity. PPL1 is a homolog of PsbP protein that optimizes the water-oxidizing reaction of PSII in green plants and is required for the efficient repair of photodamaged PSII; however, its exact function has been unknown. PPL1 was enriched in stroma lamellae and grana margins and associated with PSII subcomplexes including PSII monomers and PSII dimers, and several LHCII assemblies, while PPL1 was not detected in PSII-LHCII SCs. In a PPL1 null mutant (ppl1-2), assembly of CP43, PsbR and PsbW was affected, resulting in a reduced accumulation of PSII SCs even under moderate light intensity. This caused the abnormal association of LHCII in ppl1-2, as indicated by lower maximal quantum efficiency of PSII (Fv/Fm) and accelerated State 1 to State 2 transitions. These differences would lower the capability of plants to adapt to changing light environments, thereby leading to reduced growth under natural fluctuating light environments. Phylogenetic and structural analyses suggest that PPL1 is closely related to its cyanobacterial homolog CyanoP, which functions as an assembly factor in the early stage of PSII biogenesis. Our results suggest that PPL1 has a similar function, but the data also indicate that it could aid the association of LHCII with PSII.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Luz , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/fisiologia , Filogenia , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Tilacoides/metabolismo
18.
BMC Plant Biol ; 20(1): 413, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887556

RESUMO

BACKGROUND: Non-photosynthetic plastids of plants are known to be involved in a range of metabolic and biosynthetic reactions, even if they have been difficult to study due to their small size and lack of color. The morphology of root plastids is heterogeneous and also the plastid size, density and subcellular distribution varies depending on the cell type and developmental stage, and therefore the functional features have remained obscure. Although the root plastid proteome is likely to reveal specific functional features, Arabidopsis thaliana root plastid proteome has not been studied to date. RESULTS: In the present study, we separated Arabidopsis root protein fraction enriched with plastids and mitochondria by 2D-PAGE and identified 84 plastid-targeted and 77 mitochondrion-targeted proteins using LC-MS/MS. The most prevalent root plastid protein categories represented amino acid biosynthesis, carbohydrate metabolism and lipid biosynthesis pathways, while the enzymes involved in starch and sucrose metabolism were not detected. Mitochondrion-targeted proteins were classified mainly into the energetics category. CONCLUSIONS: This is the first study presenting gel-based map of Arabidopsis thaliana root plastid and mitochondrial proteome. Our findings suggest that Arabidopsis root plastids have broad biosynthetic capacity, and that they do not play a major role in a long-term storage of carbohydrates. The proteomic map provides a tool for further studies to compare changes in the proteome, e.g. in response to environmental cues, and emphasizes the role of root plastids in nitrogen and sulfur metabolism as well as in amino acid and fatty acid biosynthesis. The results enable taking a first step towards an integrated view of root plastid/mitochondrial proteome and metabolic functions in Arabidopsis thaliana roots.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico , Mitocôndrias/genética , Proteínas de Plantas/genética , Plastídeos/genética , Proteoma/genética , Eletroforese em Gel Bidimensional , Raízes de Plantas/genética , Proteômica
19.
BMC Microbiol ; 20(1): 57, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32160863

RESUMO

BACKGROUND: Filamentous cyanobacteria represent model organisms for investigating multicellularity. For many species, nitrogen-fixing heterocysts are formed from photosynthetic vegetative cells under nitrogen limitation. Intracellular Ca2+ has been implicated in the highly regulated process of heterocyst differentiation but its role remains unclear. Ca2+ is known to operate more broadly in metabolic signalling in cyanobacteria, although the signalling mechanisms are virtually unknown. A Ca2+-binding protein called the Ca2+ Sensor EF-hand (CSE) is found almost exclusively in filamentous cyanobacteria. Expression of asr1131 encoding the CSE protein in Anabaena sp. PCC 7120 was strongly induced by low CO2 conditions, and rapidly downregulated during nitrogen step-down. A previous study suggests a role for CSE and Ca2+ in regulation of photosynthetic activity in response to changes in carbon and nitrogen availability. RESULTS: In the current study, a mutant Anabaena sp. PCC 7120 strain lacking asr1131 (Δcse) was highly prone to filament fragmentation, leading to a striking phenotype of very short filaments and poor growth under nitrogen-depleted conditions. Transcriptomics analysis under nitrogen-replete conditions revealed that genes involved in heterocyst differentiation and function were downregulated in Δcse, while heterocyst inhibitors were upregulated, compared to the wild-type. CONCLUSIONS: These results indicate that CSE is required for filament integrity and for proper differentiation and function of heterocysts upon changes in the cellular carbon/nitrogen balance. A role for CSE in transmitting Ca2+ signals during the first response to changes in metabolic homeostasis is discussed.


Assuntos
Anabaena/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Nitrogênio/metabolismo , Anabaena/genética , Anabaena/metabolismo , Sinalização do Cálcio , Dióxido de Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Fotossíntese
20.
Plant Physiol ; 181(4): 1615-1631, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31615849

RESUMO

Thylakoid membranes in land plant chloroplasts are organized into appressed and nonappressed membranes, which contribute to the control of energy distribution between the two photosystems (PSI and PSII) from the associated light-harvesting complexes (LHCs). Under fluctuating light conditions, fast reversible phosphorylation of the N-terminal thylakoid protein domains and changes in electrostatic forces induce modifications in thylakoid organization. To gain insight into the role and dynamics of thylakoid protein phosphorylation, we used targeted proteomics to quantify amounts of the structural proteins CURVATURE THYLAKOID1 (CURT1), including the levels of CURT1B N terminus phosphorylation and acetylation, after short-term fluctuating light treatments of Arabidopsis (Arabidopsis thaliana). The CURT1B protein was localized to a specific curvature domain separated from the margin domain, and specifically depleted of chlorophyll-binding protein complexes. The acetylation and phosphorylation of the CURT1B N terminus were mutually exclusive. The level of CURT1B phosphorylation, but not of acetylation, increased upon light shifts that also led to an increase in PSII core protein phosphorylation. These dynamics were largely absent in the knockout mutant of PSII core protein kinase SER/THR PROTEIN KINASE8 (STN8). Moreover, in mutants impaired in interaction between phosphorylated LHCII and PSI, the phosphorylation dynamics of CURT1B and the amount of the other CURT1 proteins were misregulated, indicating a functional interaction between CURT1B and PSI-LHCII complexes in grana margins. The complex relationships between phosphorylation of PSII, LHCII, and CURT1B support the dynamics of thylakoid protein complexes that are crucial in the optimization of photosynthesis under fluctuating light intensities.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Acetilação , Alanina/metabolismo , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Proteínas de Ligação a DNA/química , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Biológicos , Fosforilação , Fosfotreonina/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA