Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nature ; 606(7912): 75-81, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650354

RESUMO

A quantum computer attains computational advantage when outperforming the best classical computers running the best-known algorithms on well-defined tasks. No photonic machine offering programmability over all its quantum gates has demonstrated quantum computational advantage: previous machines1,2 were largely restricted to static gate sequences. Earlier photonic demonstrations were also vulnerable to spoofing3, in which classical heuristics produce samples, without direct simulation, lying closer to the ideal distribution than do samples from the quantum hardware. Here we report quantum computational advantage using Borealis, a photonic processor offering dynamic programmability on all gates implemented. We carry out Gaussian boson sampling4 (GBS) on 216 squeezed modes entangled with three-dimensional connectivity5, using a time-multiplexed and photon-number-resolving architecture. On average, it would take more than 9,000 years for the best available algorithms and supercomputers to produce, using exact methods, a single sample from the programmed distribution, whereas Borealis requires only 36 µs. This runtime advantage is over 50 million times as extreme as that reported from earlier photonic machines. Ours constitutes a very large GBS experiment, registering events with up to 219 photons and a mean photon number of 125. This work is a critical milestone on the path to a practical quantum computer, validating key technological features of photonics as a platform for this goal.

2.
Phys Rev Lett ; 127(22): 220502, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34889639

RESUMO

We argue that long optical storage times are required to establish entanglement at high rates over large distances using memory-based quantum repeaters. Triggered by this conclusion, we investigate the 795.325 nm^{3} H_{6}↔^{3}H_{4} transition of Tm:Y_{3}Ga_{5}O_{12} (Tm:YGG). Most importantly, we find that the optical coherence time can reach 1.1 ms, and, using laser pulses, we demonstrate optical storage based on the atomic frequency comb protocol during up to 100 µs as well as a memory decay time T_{m} of 13.1 µs. Possibilities of how to narrow the gap between the measured value of T_{m} and its maximum of 275 µs are discussed. In addition, we demonstrate multiplexed storage, including with feed-forward selection, shifting and filtering of spectral modes, as well as quantum state storage using members of nonclassical photon pairs. Our results show the potential of Tm:YGG for creating multiplexed quantum memories with long optical storage times, and open the path to repeater-based quantum networks with high entanglement distribution rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA