Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Nat Immunol ; 25(7): 1207-1217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38802512

RESUMO

The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.


Assuntos
Imunidade Inata , Interferon gama , Receptores de Antígenos de Linfócitos T gama-delta , Receptores de Interleucina-7 , Fator de Transcrição STAT5 , Timo , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Timo/imunologia , Receptores de Interleucina-7/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Antígenos CD8/metabolismo , Feminino , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Interleucina-7/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38316164

RESUMO

Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 25 is August 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

3.
Blood ; 143(21): 2166-2177, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38437728

RESUMO

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current treatments, based on intensive chemotherapy regimens provide overall survival rates of ∼85% in children and <50% in adults, calling the search of new therapeutic options. We previously reported that targeting the T-cell receptor (TCR) in T-ALL with anti-CD3 (αCD3) monoclonal antibodies (mAbs) enforces a molecular program akin to thymic negative selection, a major developmental checkpoint in normal T-cell development; induces leukemic cell death; and impairs leukemia progression to ultimately improve host survival. However, αCD3 monotherapy resulted in relapse. To find out actionable targets able to re-enforce leukemic cells' vulnerability to αCD3 mAbs, including the clinically relevant teplizumab, we identified the molecular program induced by αCD3 mAbs in patient-derived xenografts derived from T-ALL cases. Using large-scale transcriptomic analysis, we found prominent expression of tumor necrosis factor α (TNFα), lymphotoxin α (LTα), and multiple components of the "TNFα via NF-κB signaling" pathway in anti-CD3-treated T-ALL. We show in vivo that etanercept, a sink for TNFα/LTα, enhances αCD3 antileukemic properties, indicating that TNF/TNF receptor (TNFR) survival pathways interferes with TCR-induced leukemic cell death. However, suppression of TNF-mediated survival and switch to TNFR-mediated cell death through inhibition of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) with the second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant synergizes with αCD3 to impair leukemia expansion in a receptor-interacting serine/threonine-protein kinase 1-dependent manner and improve mice survival. Thus, our results advocate the use of either TNFα/LTα inhibitors, or birinapant/other SMAC mimetics to improve anti-CD3 immunotherapy in T-ALL.


Assuntos
Complexo CD3 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Fator de Necrose Tumoral alfa , Humanos , Animais , Camundongos , Complexo CD3/imunologia , Complexo CD3/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Imunoterapia/métodos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
4.
Blood ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848537

RESUMO

We previously reported a better outcome in adult and pediatric T-cell acute lymphoblastic leukemia (T-ALL) harboring NOTCH1 and/or FBXW7 mutations without alterations of K-N-RAS and PTEN genes. Availability of high-throughput next-generation sequencing strategies (NGS) led us to refine the outcome prediction in T-ALL. Targeted whole-exome sequencing of 72 T-ALL related oncogenes was performed in 198 adult T-ALLs in first remission (CR1) from the GRAALL-2003/2005 protocols (ClinicalTrial.gov, NCT00222027, NCT00327678) and 242 pediatric T-ALLs from the FRALLE2000T. This approach enabled the identification of the first NGS-based classifier in T-ALL categorizing low-risk patients as those with N/F, PHF6, or EP300 mutations, excluding N-K-RAS, PI3K pathway (PTEN, PIK3CA, and PIK3R1), TP53, DNMT3A, IDH1/2, and IKZF1 alterations, with a 5-year cumulative incidence of relapse (CIR) estimated at 21%. Conversely, the remaining patients were classified as high-risk, exhibiting a 5-year CIR estimated at 47%. We externally validated this stratification in the pediatric cohort. NGS-based classifier was highly prognostic, independently of minimal residual disease (MRD) and white blood cells counts (WBC), in both adult and pediatric cohorts. Integration of the NGS-based classifier into a comprehensive risk stratification model, including WBC count at diagnosis and MRD at the end of induction, enabled the identification of an adverse risk subgroup (25%) with a 5-year CIR estimated at 51%, and a favorable risk group (32%) with a 5-year CIR estimated at 12%. NGS-based stratification combined with WBC and MRD sharpens the prognostic classification in T-ALL and identifies a new subgroup of patients who may benefit from innovative therapeutic approaches.

5.
Blood ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518104

RESUMO

Given the poor outcome of refractory and relapsing T-ALL, identifying prognostic markers is still challenging. Using SNP-array analysis, we provide a comprehensive analysis of genomic imbalances in a cohort of 317 newly-diagnosed T-ALL patients including 135 children and 182 adults with respect to clinical and biological features and outcomes. SNP-array results identified at least one somatic genomic imbalance in virtually all T-ALL patients (~96%). Del(9)(p21) (~70%) and UPD(9)p21)/CDKN2A/B (~28%) were the most frequent genomic imbalances. Unexpectedly del(13q14)/RB1/DLEU1 (~14%) was the second more frequent CNV followed by del(6)(q15)/CASP8AP2 (~11%), del(1)(p33)/SIL-TAL1 (~11%), del(12)(p13)ETV6/CDKN1B (~9%), del(18)(p11)/PTPN2 (~9%), del(1)(p36)/RPL22 (~9%), and del(17)(q11)/NF1/SUZ12 (~8%). SNP-array also revealed distinct profiles of genomic imbalances according to age, immunophenotype, and oncogenetic subgroups. In particular, adult T-ALL patients demonstrated a significantly higher incidence of del(1)(p36)/RPL22, and del(13)(q14)/RB1/DLEU1, and lower incidence of del(9)(p21) and UPD(9p21)/CDKN2A/B. We determined a threshold of 15 genomic imbalances to stratify patients into high- and low-risk groups of relapse. Survival analysis also revealed the poor outcome, despite the low number of affected cases, conferred by the presence of chromothripsis (n=6, ~2%), del(16)(p13)/CREBBP (n=15, ~5%) as well as the newly identified recurrent gain at 6q27 involving MLLT4 (n=10, ~3%). Genomic complexity, del(16)(p13)/CREBBP and gain at 6q27 involving MLLT4 maintained their significance in multivariate analysis for survival outcome. Our study thus demonstrated that whole genome analysis of imbalances provides new insights to refine risk stratification in T-ALL.

6.
Genome Res ; 32(7): 1328-1342, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34162697

RESUMO

Broad domains of H3K4 methylation have been associated with consistent expression of tissue-specific, cell identity, and tumor suppressor genes. Here, we identified broad domain-associated genes in healthy human thymic T cell populations and a collection of T cell acute lymphoblastic leukemia (T-ALL) primary samples and cell lines. We found that broad domains are highly dynamic throughout T cell differentiation, and their varying breadth allows the distinction between normal and neoplastic cells. Although broad domains preferentially associate with cell identity and tumor suppressor genes in normal thymocytes, they flag key oncogenes in T-ALL samples. Moreover, the expression of broad domain-associated genes, both coding and noncoding, is frequently deregulated in T-ALL. Using two distinct leukemic models, we showed that the ectopic expression of T-ALL oncogenic transcription factor preferentially impacts the expression of broad domain-associated genes in preleukemic cells. Finally, an H3K4me3 demethylase inhibitor differentially targets T-ALL cell lines depending on the extent and number of broad domains. Our results show that the regulation of broad H3K4me3 domains is associated with leukemogenesis, and suggest that the presence of these structures might be used for epigenetic prioritization of cancer-relevant genes, including long noncoding RNAs.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Epigênese Genética , Histonas/metabolismo , Humanos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
7.
Genome Res ; 32(7): 1343-1354, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34933939

RESUMO

Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


Assuntos
Epigenômica , Translocação Genética , Cromatina/genética , Histonas , Humanos , Oncogenes
8.
Blood ; 142(2): 158-171, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37023368

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a dismal prognosis related to refractory/relapsing diseases, raising the need for new targeted therapies. Activating mutations of interleukin-7-receptor pathway genes (IL-7Rp) play a proven leukemia-supportive role in T-ALL. JAK inhibitors, such as ruxolitinib, have recently demonstrated preclinical efficacy. However, prediction markers for sensitivity to JAK inhibitors are still lacking. Herein, we show that IL-7R (CD127) expression is more frequent (∼70%) than IL-7Rp mutations in T-ALL (∼30%). We compared the so-called nonexpressers (no IL-7R expression/IL-7Rp mutation), expressers (IL7R expression without IL-7Rp mutation), and mutants (IL-7Rp mutations). Integrative multiomics analysis outlined IL-7R deregulation in virtually all T-ALL subtypes, at the epigenetic level in nonexpressers, genetic level in mutants, and posttranscriptional level in expressers. Ex vivo data using primary-derived xenografts support that IL-7Rp is functional whenever the IL-7R is expressed, regardless of the IL-7Rp mutational status. Consequently, ruxolitinib impaired T-ALL survival in both expressers and mutants. Interestingly, we show that expressers displayed ectopic IL-7R expression and IL-7Rp addiction conferring a deeper sensitivity to ruxolitinib. Conversely, mutants were more sensitive to venetoclax than expressers. Overall, the combination of ruxolitinib and venetoclax resulted in synergistic effects in both groups. We illustrate the clinical relevance of this association by reporting the achievement of complete remission in 2 patients with refractory/relapsed T-ALL. This provides proof of concept for translation of this strategy into clinics as a bridge-to-transplantation therapy. IL7R expression can be used as a biomarker for sensitivity to JAK inhibition, thereby expanding the fraction of patients with T-ALL eligible for ruxolitinib up to nearly ∼70% of T-ALL cases.


Assuntos
Inibidores de Janus Quinases , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Linfócitos T/patologia
9.
Immunity ; 45(3): 610-625, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27612641

RESUMO

The nature of gut intraepithelial lymphocytes (IELs) lacking antigen receptors remains controversial. Herein we showed that, in humans and in mice, innate intestinal IELs expressing intracellular CD3 (iCD3(+)) differentiate along an Id2 transcription factor (TF)-independent pathway in response to TF NOTCH1, interleukin-15 (IL-15), and Granzyme B signals. In NOTCH1-activated human hematopoietic precursors, IL-15 induced Granzyme B, which cleaved NOTCH1 into a peptide lacking transcriptional activity. As a result, NOTCH1 target genes indispensable for T cell differentiation were silenced and precursors were reprogrammed into innate cells with T cell marks including intracellular CD3 and T cell rearrangements. In the intraepithelial lymphoma complicating celiac disease, iCD3(+) innate IELs acquired gain-of-function mutations in Janus kinase 1 or Signal transducer and activator of transcription 3, which enhanced their response to IL-15. Overall we characterized gut T cell-like innate IELs, deciphered their pathway of differentiation and showed their malignant transformation in celiac disease.


Assuntos
Doença Celíaca/imunologia , Interleucina-15/imunologia , Intestinos/imunologia , Linfoma/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Granzimas/imunologia , Humanos , Proteína 2 Inibidora de Diferenciação/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor Notch1/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Transcrição Gênica/imunologia
10.
Blood ; 140(13): 1522-1532, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35687761

RESUMO

Adult T-cell leukemia (ATL) is a lymphoid neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), which encodes the transcriptional activator Tax, which participates in the immortalization of infected T cells. ATL is classified into 4 subtypes: smoldering, chronic, acute, and lymphoma. We determined whether natural killer receptors (NKRs) were expressed in ATL. NKR expression (KIR2DL1/2DS1, KIR2DL2/2DL3/2DS2, KIR3DL2, NKG2A, NKG2C, and NKp46) was assessed in a discovery cohort of 21 ATL, and KIR3DL2 was then assessed in 71 patients with ATL. KIR3DL2 was the only NKR among those studied frequently expressed by acute-type vs lymphoma- and chronic/smoldering-type ATL (36 of 40, 4 of 16, and 1 of 15, respectively; P = .001), although acute- and lymphoma-type ATL had similar mutation profiles by targeted exome sequencing. The correlation of KIR3DL2 expression with promoter demethylation was determined by microarray-based DNA methylation profiling. To explore the role of HTLV-1, KIR3DL2 and TAX messenger RNA (mRNA) expression levels were assessed by PrimeFlow RNA in primary ATL and in CD4+ T cells infected with HTLV-1 in vitro. TAX mRNA and KIR3DL2 protein expressions were correlated on ATL cells. HTLV-1 infection triggered KIR3DL2 by CD4+ cells but Tax alone did not induce KIR3DL2 expression. Ex vivo, autologous, antibody-dependent cell cytotoxicity using lacutamab, a first-in-class anti-KIR3DL2 humanized antibody, selectively killed KIR3DL2+ primary ATL cells ex vivo. To conclude, KIR3DL2 expression is associated with acute-type ATL. Transcription of KIR3DL2 may be triggered by HTLV-1 infection and correlates with hypomethylation of the promoter. The benefit of targeting KIR3DL2 with lacutamab is being further explored in a randomized phase 2 study in peripheral T-cell lymphoma, including ATL (registered on https://clinicaltrials.gov as #NCT04984837).


Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/complicações , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Leucemia-Linfoma de Células T do Adulto/patologia , RNA , RNA Mensageiro , Receptores KIR3DL2/genética
11.
J Allergy Clin Immunol ; 151(6): 1634-1645, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36638922

RESUMO

BACKGROUND: Allogenic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are potentially curative treatments for severe combined immunodeficiency (SCID). Late-onset posttreatment manifestations (such as persistent hepatitis) are not uncommon. OBJECTIVE: We sought to characterize the prevalence and pathophysiology of persistent hepatitis in transplanted SCID patients (SCIDH+) and to evaluate risk factors and treatments. METHODS: We used various techniques (including pathology assessments, metagenomics, single-cell transcriptomics, and cytometry by time of flight) to perform an in-depth study of different tissues from patients in the SCIDH+ group and corresponding asymptomatic similarly transplanted SCID patients without hepatitis (SCIDH-). RESULTS: Eleven patients developed persistent hepatitis (median of 6 years after HSCT or GT). This condition was associated with the chronic detection of enteric viruses (human Aichi virus, norovirus, and sapovirus) in liver and/or stools, which were not found in stools from the SCIDH- group (n = 12). Multiomics analysis identified an expansion of effector memory CD8+ T cells with high type I and II interferon signatures. Hepatitis was associated with absence of myeloablation during conditioning, split chimerism, and defective B-cell function, representing 25% of the 44 patients with SCID having these characteristics. Partially myeloablative retransplantation or GT of patients with this condition (which we have named as "enteric virus infection associated with hepatitis") led to the reconstitution of T- and B-cell immunity and remission of hepatitis in 5 patients, concomitantly with viral clearance. CONCLUSIONS: Enteric virus infection associated with hepatitis is related to chronic enteric viral infection and immune dysregulation and is an important risk for transplanted SCID patients with defective B-cell function.


Assuntos
Infecções por Enterovirus , Transplante de Células-Tronco Hematopoéticas , Hepatite , Imunodeficiência Combinada Severa , Viroses , Humanos , Imunodeficiência Combinada Severa/terapia , Imunodeficiência Combinada Severa/etiologia , Linfócitos T CD8-Positivos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Viroses/etiologia , Hepatite/etiologia
12.
Mol Cancer ; 22(1): 12, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36650499

RESUMO

The acquisition of genetic abnormalities engendering oncogene dysregulation underpins cancer development. Certain proto-oncogenes possess several dysregulation mechanisms, yet how each mechanism impacts clinical outcome is unclear. Using T-cell acute lymphoblastic leukemia (T-ALL) as an example, we show that patients harboring 5'super-enhancer (5'SE) mutations of the TAL1 oncogene identifies a specific patient subgroup with poor prognosis irrespective of the level of oncogene dysregulation. Remarkably, the MYB dependent oncogenic 5'SE can be targeted using Mebendazole to induce MYB protein degradation and T-ALL cell death. Of note Mebendazole treatment demonstrated efficacy in vivo in T-ALL preclinical models. Our work provides proof of concept that within a specific oncogene driven cancer, the mechanism of oncogene dysregulation rather than the oncogene itself can identify clinically distinct patient subgroups and pave the way for future super-enhancer targeting therapy.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Mebendazol
13.
Mol Cancer ; 22(1): 108, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430263

RESUMO

The reintegration of excised signal joints resulting from human V(D)J recombination was described as a potent source of genomic instability in human lymphoid cancers. However, such molecular events have not been recurrently reported in clinical patient lymphoma/leukemia samples. Using a specifically designed NGS-capture pipeline, we here demonstrated the reintegration of T-cell receptor excision circles (TRECs) in 20/1533 (1.3%) patients with T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL). Remarkably, the reintegration of TREC recurrently targeted the tumor suppressor gene, ZFP36L2, in 17/20 samples. Thus, our data identified a new and hardly detectable mechanism of gene deregulation in lymphoid cancers providing new insights in human oncogenesis.


Assuntos
Carcinogênese , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Instabilidade Genômica , Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição
14.
Kidney Int ; 103(1): 70-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108807

RESUMO

Long-term multilineage hematopoietic donor chimerism occurs sporadically in patients who receive a transplanted solid organ enriched in lymphoid tissues such as the intestine or liver. There is currently no evidence for the presence of kidney-resident hematopoietic stem cells in any mammal species. Graft-versus-host-reactive donor T cells promote engraftment of graft-derived hematopoietic stem cells by making space in the bone marrow. Here, we report full (over 99%) multilineage, donor-derived hematopoietic chimerism in a pediatric kidney transplant recipient with syndromic combined immune deficiency that leads to transplant tolerance. Interestingly, we found that the human kidney-derived hematopoietic stem cells took up long-term residence in the recipient's bone marrow and gradually replaced their host counterparts, leading to blood type conversion and full donor chimerism of both lymphoid and myeloid lineages. Thus, our findings highlight the existence of human kidney-derived hematopoietic stem cells with a self-renewal ability able to support multilineage hematopoiesis.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Humanos , Criança , Medula Óssea , Linfócitos T , Hematopoese , Rim , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Medula Óssea , Mamíferos
15.
Blood ; 138(19): 1855-1869, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34125178

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a group of aggressive hematological cancers with dismal outcomes that are in need of new therapeutic options. Polycomb repressor complex 2 (PRC2) loss-of-function alterations were reported in pediatric T-ALL, yet their clinical relevance and functional consequences remain elusive. Here, we extensively analyzed PRC2 alterations in a large series of 218 adult T-ALL patients. We found that PRC2 genetic lesions are frequent events in T-ALL and are not restricted to early thymic precursor ALL. PRC2 loss of function associates with activating mutations of the IL7R/JAK/STAT pathway. PRC2-altered T-ALL patients respond poorly to prednisone and have low bone marrow blast clearance and persistent minimal residual disease. Furthermore, we identified that PRC2 loss of function profoundly reshapes the genetic and epigenetic landscapes, leading to the reactivation of stem cell programs that cooperate with bromodomain and extraterminal (BET) proteins to sustain T-ALL. This study identifies BET proteins as key mediators of the PRC2 loss of function-induced remodeling. Our data have uncovered a targetable vulnerability to BET inhibition that can be exploited to treat PRC2-altered T-ALL patients.


Assuntos
Regulação Leucêmica da Expressão Gênica , Mutação com Perda de Função , Complexo Repressor Polycomb 2/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Animais , Antineoplásicos Hormonais/uso terapêutico , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação com Perda de Função/efeitos dos fármacos , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Prednisona/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Células Tumorais Cultivadas , Adulto Jovem
16.
Haematologica ; 108(5): 1259-1271, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632736

RESUMO

T-cell acute lymphocytic leukemia protein 1 (TAL1) is one of the most frequently deregulated oncogenes in T-cell acute lymphoblastic leukemia (T-ALL). Its deregulation can occur through diverse cis-alterations, including SIL-TAL1 microdeletions, translocations with T-cell Receptor loci, and more recently described upstream intergenic non-coding mutations. These mutations consist of recurrent focal microinsertions that create an oncogenic neo-enhancer accompanied by activating epigenetic marks. This observation laid the groundwork for an innovative paradigm concerning the activation of proto-oncogenes via genomic alterations of non-coding intergenic regions. However, for the majority of T-ALL expressing TAL1 (TAL1+), the deregulation mechanism remains 'unresolved'. We took advantage of H3K27ac and H3K4me3 chromatin immunoprecipitation sequencing data of eight cases of T-ALL, including five TAL1+ cases. We identified a putative novel oncogenic neo-enhancer downstream of TAL1 in an unresolved monoallelic TAL1+ case. A rare but recurrent somatic heterozygous microinsertion within this region creates a de novo binding site for MYB transcription factor. Here we demonstrate that this mutation leads to increased enhancer activity, gain of active epigenetic marks, and TAL1 activation via recruitment of MYB. These results highlight the diversity of non-coding mutations that can drive oncogene activation.


Assuntos
Elementos Facilitadores Genéticos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mutação , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Linfócitos T/metabolismo , Fatores de Transcrição/genética
17.
Ann Pathol ; 43(3): 252-265, 2023 Jun.
Artigo em Francês | MEDLINE | ID: mdl-37156715

RESUMO

The gastrointestinal tract is the site of exciting immunological interactions between the epithelium and the mucosa-associated lymphoid tissue, leading to the immune response to food and microbial antigens in the digestive lumen. The objective of this review is to present the main dysimmune pathologies of the digestive tract leading to an enteropathy. As examples, we describe celiac and non-celiac enteropathies to clarify a florid diagnostic framework, by identifying a spectrum of elementary lesions, which must be confronted with the clinico biological context of the patient to orient the diagnosis. The microscopic lesions observed are most often non-specific and may be encountered in several diagnostic settings. Moreover, it is a set of elementary lesions in each clinical context that will orient the diagnostic framework. Celiac disease is the main etiology of enteropathy with villous atrophy, its diagnosis is multidisciplinary and there are many differential diagnoses. We will discuss celiac disease lymphomatous complications as enteropathy associated T-cell lymphoma including refractory sprue type 2. We will then present the non-celiac enteropathies. Among these, enteropathies of unknown etiology may be associated with a primary immune deficiency that may be reflected by florid lymphoid hyperplasia of the gastrointestinal tract and/or be associated with an infectious etiology that should also be constantly sought. Finally, we will discuss of induced enteropathy by new immunomodulatory treatments.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/complicações , Doença Celíaca/diagnóstico , Intestino Delgado/patologia , Hiperplasia/patologia
18.
Gut ; 71(3): 497-508, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33579790

RESUMO

OBJECTIVE: Enteropathy-associated T-cell lymphoma (EATL) is a rare but severe complication of coeliac disease (CeD), often preceded by low-grade clonal intraepithelial lymphoproliferation, referred to as type II refractory CeD (RCDII). Knowledge on underlying oncogenic mechanisms remains scarce. Here, we analysed and compared the mutational landscape of RCDII and EATL in order to identify genetic drivers of CeD-associated lymphomagenesis. DESIGN: Pure populations of RCDII-cells derived from intestinal biopsies (n=9) or sorted from blood (n=2) were analysed by whole exome sequencing, comparative genomic hybridisation and RNA sequencing. Biopsies from RCDII (n=50), EATL (n=19), type I refractory CeD (n=7) and uncomplicated CeD (n=18) were analysed by targeted next-generation sequencing. Moreover, functional in vitro studies and drug testing were performed in RCDII-derived cell lines. RESULTS: 80% of RCDII and 90% of EATL displayed somatic gain-of-functions mutations in the JAK1-STAT3 pathway, including a remarkable p.G1097 hotspot mutation in the JAK1 kinase domain in approximately 50% of cases. Other recurrent somatic events were deleterious mutations in nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) regulators TNFAIP3 and TNIP3 and potentially oncogenic mutations in TET2, KMT2D and DDX3X. JAK1 inhibitors, and the proteasome inhibitor bortezomib could block survival and proliferation of malignant RCDII-cell lines. CONCLUSION: Mutations activating the JAK1-STAT3 pathway appear to be the main drivers of CeD-associated lymphomagenesis. In concert with mutations in negative regulators of NF-κB, they may favour the clonal emergence of malignant lymphocytes in the cytokine-rich coeliac intestine. The identified mutations are attractive therapeutic targets to treat RCDII and block progression towards EATL.


Assuntos
Doença Celíaca/complicações , Doença Celíaca/genética , Linfoma de Células T Associado a Enteropatia/etiologia , Mutação com Ganho de Função/genética , Linfócitos/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Celíaca/patologia , Estudos de Coortes , Linfoma de Células T Associado a Enteropatia/patologia , Feminino , França , Humanos , Janus Quinase 1/genética , Masculino , Pessoa de Meia-Idade , Fator de Transcrição STAT3/genética , Adulto Jovem
19.
Mol Cancer ; 21(1): 65, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246138

RESUMO

BACKGROUND: Anaplastic large cell lymphoma positive for ALK (ALK+ ALCL) is a rare type of non-Hodgkin lymphoma. This lymphoma is caused by chromosomal translocations involving the anaplastic lymphoma kinase gene (ALK). In this study, we aimed to identify mechanisms of transformation and therapeutic targets by generating a model of ALK+ ALCL lymphomagenesis ab initio with the specific NPM-ALK fusion. METHODS: We performed CRISPR/Cas9-mediated genome editing of the NPM-ALK chromosomal translocation in primary human activated T lymphocytes. RESULTS: Both CD4+ and CD8+ NPM-ALK-edited T lymphocytes showed rapid and reproducible competitive advantage in culture and led to in vivo disease development with nodal and extra-nodal features. Murine tumors displayed the phenotypic diversity observed in ALK+ ALCL patients, including CD4+ and CD8+ lymphomas. Assessment of transcriptome data from models and patients revealed global activation of the WNT signaling pathway, including both canonical and non-canonical pathways, during ALK+ ALCL lymphomagenesis. Specifically, we found that the WNT signaling cell surface receptor ROR2 represented a robust and genuine marker of all ALK+ ALCL patient tumor samples. CONCLUSIONS: In this study, ab initio modeling of the ALK+ ALCL chromosomal translocation in mature T lymphocytes enabled the identification of new therapeutic targets. As ROR2 targeting approaches for other cancers are under development (including lung and ovarian tumors), our findings suggest that ALK+ ALCL cases with resistance to current therapies may also benefit from ROR2 targeting strategies.


Assuntos
Linfoma Anaplásico de Células Grandes , Quinase do Linfoma Anaplásico/genética , Animais , Humanos , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Camundongos , Fenótipo , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Translocação Genética
20.
Mod Pathol ; 35(9): 1227-1235, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35562412

RESUMO

In the latest 2016 World Health Organization classification of hematological malignancies, T-cell lymphoblastic lymphoma (T-LBL) and lymphoblastic leukemia (T-ALL) are grouped together into one entity called T-cell lymphoblastic leukemia/lymphoma (T-LBLL). However, the question of whether these entities represent one or two diseases remains. Multiple studies on driver alterations in T-ALL have led to a better understanding of the disease while, so far, little data on genetic profiles in T-LBL is available. We sought to define recurrent genetic alterations in T-LBL and provide a comprehensive comparison with T-ALL. Targeted whole-exome next-generation sequencing of 105 genes, multiplex ligation-dependent probe amplification, and quantitative PCR allowed comprehensive genotype assessment in 818, consecutive, unselected, newly diagnosed patients (342 T-LBL vs. 476 T-ALL). The median age at diagnosis was similar in T-LBL and T-ALL (17 vs. 15 years old, respectively; p = 0.2). Although we found commonly altered signaling pathways and co-occurring mutations, we identified recurrent dissimilarities in actionable gene alterations in T-LBL as compared to T-ALL. HOX abnormalities (TLX1 and TLX3 overexpression) were more frequent in T-ALL (5% of T-LBL vs 13% of T-ALL had TLX1 overexpression; p = 0.04 and 6% of T-LBL vs 17% of T-ALL had TLX3 overexpression; p = 0.006). The PI3K signaling pathway was significantly more frequently altered in T-LBL as compared to T-ALL (33% vs 19%; p < 0.001), especially through PIK3CA alterations (9% vs 2%; p < 0.001) with PIK3CAH1047 as the most common hotspot. Similarly, T-LBL genotypes were significantly enriched in alterations in genes coding for the EZH2 epigenetic regulator and in TP53 mutations (respectively, 13% vs 8%; p = 0.016 and 7% vs 2%; p < 0.001). This genetic landscape of T-LBLL identifies differential involvement of recurrent alterations in T-LBL as compared to T-ALL, thus contributing to better understanding and management of this rare disease.


Assuntos
Leucemia-Linfoma de Células T do Adulto , Linfoma de Células T , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adolescente , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Leucemia-Linfoma de Células T do Adulto/patologia , Fosfatidilinositol 3-Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA