Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(12): 5652-5663, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38470330

RESUMO

Most 3d metal-based single-molecule magnets (SMMs) use N-ligands or ligands with even softer donors to impart a particular coordination geometry and increase the zero-field splitting parameter |D|, while complexes with hard O-donor ligands showing slow magnetization relaxation are rare. Here, we report that a diamagnetic NiII complex of a tetradentate ligand featuring two N-heterocyclic carbene and two alkoxide-O donors, [LO,ONi], can serve as a {O,O'}-chelating metalloligand to give a trinuclear complex [(LO,ONi)Co(LO,ONi)](OTf)2 (2) with an elongated tetrahedral {CoIIO4} core, D = -74.3 cm-1, and a spin reversal barrier Ueff = 86.9 cm-1 in the absence of an external dc field. The influence of diamagnetic NiII on the electronic structure of the {CoO4} unit in comparison to [Co(OPh)4]2- (A) has been probed with multireference ab initio calculations. These reveal a contrapolarizing effect of the NiII, which forms stronger metal-alkoxide bonds than the central CoII, inducing a change in ligand field splitting and a 5-fold increase in the magnetic anisotropy in 2 compared to A, with an easy magnetization axis along the Ni-Co-Ni vector. This demonstrates a strategy to enhance the SMM properties of 3d metal complexes with hard O-donors by modulating the ligand field character via the coordination of diamagnetic ions and the benefit of robust metalloligands in that regard.

2.
Chemistry ; 29(30): e202203449, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36919766

RESUMO

[Mn3 O(OAc)7 (HOAc)]6 ⋅ x AcOH (x=6-9) represents a rare example of a compound containing molecular Mn18 -rings. These are formed by Mn3 (µ3 -O) subunits in which the high-spin Mn(III) centers are bridged by three pairs of acetate anions (AcO- ). An AcOH molecule coordinates to one of the Mn atoms leading to [Mn3 (µ3 -O)(µ2 -OAc)6 (AcOH)]-units, designated in short as Mn3 -units, that are interconnected by acetate anions via the other two Mn atoms to form Mn18 -rings. Magnetic measurements show weak ferromagnetic interactions between them that are suppressed in strong magnetic field. Quantum-chemical calculations on Mn3 model complexes using independently DFT and ab-initio multi reference methods (CASSCF/NEVPT2) show a correlation between the orientation of the pseudo-Jahn-Teller axes of pairs of Mn(III) magnetic centers and corresponding exchange coupling energies. Weak coupling between Mn3 -units within the Mn18 -ring allowed to simulate the magnetic susceptibility versus temperature dependence in terms of basically uncoupled magnetic moments of each Mn3 -unit within the ring.

3.
Inorg Chem ; 62(42): 17499-17509, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37812145

RESUMO

A detailed computational study of hypothetical sandwich dysprosium double-decker complexes, bridged by various numbers of aliphatic linkers, was performed to evaluate the effect of the structural modifications on their ground-state magnetic sublevels and assess their potential as candidates for single-molecule magnets (SMMs). The molecular structures of seven complexes were optimized using the TPSSh functional, and the electronic structure and magnetic properties were investigated using the complete active space self-consistent field method (CASSCF). Estimates of the magnetic moment blocking barrier (Ueff) and blocking temperatures (TB) are reported. In addition, a new method based on computed derivatives of effective demagnetization barriers Ueff with respect to vibrational normal modes was introduced and applied to evaluate the impact of spin-phonon coupling on the SMM properties. On the basis of the computed parameters, we have identified promising candidates with properties superior to those of the existing single-molecule magnets.

4.
Inorg Chem ; 62(7): 3153-3161, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36744742

RESUMO

The rational design of 3d-metal-based single-molecule magnets (SMM) requires a fundamental understanding of their intrinsic electronic and structural properties and how they translate into experimentally observable features. Here, we determined the magnetic properties of the linear iron(I) silylamides K{crypt}[FeL2] and [KFeL2] (L = -N(Dipp)SiMe3; crypt = 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosan). For the former, slow-relaxation of the magnetization with a spin reversal barrier of Ueff = 152 cm-1 as well as a closed-waist magnetic hysteresis and magnetic blocking below 2.5 K are observed. For the more linear [KFeL2], in which the potassium cation is encapsulated by the aryl substituents of the amide ligands, the relaxation barrier and the blocking temperature increase to Ueff = 184 cm-1 and TB = 4.5 K, respectively. The increase is rationalized by a more pronounced axial anisotropy in [KFeL2] determined by dc-SQUID magnetometry. The effective relaxation barrier of [KFeL2] is in agreement with the energy spacing between the ground and first-excited magnetic states, as obtained by field-dependent IR-spectroscopy (178 cm-1), magnetic measurements (208 cm-1), as well as theoretical analysis (212 cm-1). In comparison with the literature, the results show that magnetic coercivity in linear iron(I) silylamides is driven by the degree of linearity in conjunction with steric encumbrance, whereas the ligand symmetry is a marginal factor.

5.
Inorg Chem ; 61(1): 178-192, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34930002

RESUMO

Herein, we study the electronic structure, energies, and vibronic structure of optical d-d transitions of Cr3+ ions doped in beryl (Be3Si6Al2O18:Cr3+, emerald). A computational protocol is developed that combines periodic density functional theory (for modeling of the bulk crystalline lattice of emerald) and the multireference configuration interaction complete active space self-consistent field method supplemented with n-electron valence second-order perturbation theory (for the calculation of the energy levels, wave functions, and spin-Hamiltonian and ligand-field parameters of the trigonal Cr3+ centers in the [CrO6]9- clusters embedded in an extended point charge field). Ligand-field parameters were extracted from mapping the effective ligand-field Hamiltonian onto the full many-particle Hamiltonian from one side and from a direct fit to energies of computed d-d transitions on the other side. These have been analyzed using ab initio ligand-field theory. The quality of the theoretical predictions is critically assessed through a detailed comparison with the available experimental data.

6.
Inorg Chem ; 61(43): 17123-17136, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36264658

RESUMO

A combination of inelastic neutron scattering (INS), far-IR magneto-spectroscopy (FIRMS), and Raman magneto-spectroscopy (RaMS) has been used to comprehensively probe magnetic excitations in Co(AsPh3)2I2 (1), a reported single-molecule magnet (SMM). With applied field, the magnetic zero-field splitting (ZFS) peak (2D') shifts to higher energies in each spectroscopy. INS placed the ZFS peak at 54 cm-1, as revealed by both variable-temperature (VT) and variable-magnetic-field data, giving results that agree well with those from both far-IR and Raman studies. Both FIRMS and RaMS also reveal the presence of multiple spin-phonon couplings as avoided crossings with neighboring phonons. Here, phonons refer to both intramolecular and lattice vibrations. The results constitute a rare case in which the spin-phonon couplings are observed with both Raman-active (g modes) and far-IR-active phonons (u modes; space group P21/c, no. 14, Z = 4 for 1). These couplings are fit using a simple avoided crossing model with coupling constants of ca. 1-2 cm-1. The combined spectroscopies accurately determine the magnetic excited level and the interaction of the magnetic excitation with phonon modes. Density functional theory (DFT) phonon calculations compare well with INS, allowing for the assignment of the modes and their symmetries. Electronic calculations elucidate the nature of ZFS in the complex. Features of different techniques to determine ZFS and other spin-Hamiltonian parameters in transition-metal complexes are summarized.

7.
Chemistry ; 27(61): 15239-15250, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34427372

RESUMO

The first confacial pentaoctahedron comprised of transition metal ions namely ZnII FeIII A FeIII B FeIII A ZnII has been synthesized by using a dinucleating nonadentate ligand. The face-sharing bridging mode enforces short ZnII ⋅⋅⋅FeIII A and FeIII A ⋅⋅⋅FeIII B distances of 2.83 and 2.72 Å, respectively. Ab-initio CASSCF/NEVPT2 calculations provide significant negative zero-field splittings for FeIII A and FeIII B with |DA |>|DB | with the main component along the C3 axis. Hence, a spin-Hamiltonian comprised of anisotropic exchange, zero-field, and Zeeman term was employed. This allowed by following the boundary conditions from the theoretical results the simulation in a theory-guided parameter determination with Jxy =+0.37, Jz =-0.32, DA =-1.21, EA =-0.24, DB =-0.35, and EB =-0.01 cm-1 supported by simulations of high-field magnetic Mössbauer spectra recorded at 2 K. The weak but ferromagnetic FeIII A FeIII B interaction arises from the small bridging angle of 84.8° being at the switch from anti- to ferromagnetic for the face-sharing bridging mode.

8.
Chemistry ; 27(38): 9801-9813, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830547

RESUMO

As a consequence of the static Jahn-Teller effect of the 5 E ground state of MnIII in cubic structures with octahedral parent geometries, their octahedral coordination spheres become distorted. In the case of six fluorido ligands, [MnF6 ]3- anions with two longer and four shorter Mn-F bonds making elongated octahedra are usually observed. Herein, we report the synthesis of the compound K3 [MnF6 ] through a high-temperature approach and its crystallization by a high-pressure/high-temperature route. The main structural motifs are two quasi-isolated, octahedron-like [MnF6 ]3- anions of quite different nature compared to that met in ideal octahedral MnIII Jahn-Teller systems. Owing to the internal electric field of Ci symmetry dominated by the next-neighbour K+ ions acting on the MnIII sites, both sites, the pseudo-rhombic (site 1) and the pseudo-tetragonally elongated (site 2) [MnF6 ]3- anions are present in K3 [MnF6 ]. The compound was characterized by single-crystal and powder X-ray diffraction, and magnetometry as well as by FTIR, Raman, and ligand field spectroscopy. A theoretical interpretation of the electronic structure and molecular geometry of the two Mn sites in the lattice is given by using a vibronic coupling model with parameters adjusted from multireference ab-initio cluster calculations.

9.
Inorg Chem ; 60(23): 18553-18560, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34807605

RESUMO

Spin-vibronic coupling leads to spin relaxation in paramagnetic molecules, and an understanding of factors that contribute to this phenomenon is essential for designing next-generation spintronics technology, including single-molecule magnets and spin-based qubits, wherein long-lifetime magnetic ground states are desired. We report spectroscopic and magnetic characterization of the isoelectronic and isostructural series of homoleptic zerovalent transition metal triad M(CNDipp)6 (M = V, Nb, Ta; CNDipp = 2,6-diisopropylphenyl isocyanide) and show experimentally the significant increase in spin relaxation rate upon going from V to Nb to Ta. Correlated electronic calculations and first principle spin-phonon computations support the role of spin-orbit coupling in modulating spin-phonon relaxation. Our results provide experimental evidence that increasing magnetic anisotropy through spin-orbit coupling interactions leads to increased spin-vibronic relaxation, which is detrimental to long spin lifetime in paramagnetic molecules.

10.
J Am Chem Soc ; 142(45): 19161-19169, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33111523

RESUMO

We present an extensive study of tetranuclear transition-metal cluster compounds M4(NPtBu3)4 and [M4(NPtBu3)4][B(C6F5)4] (M = Ni, Cu; tBu = tert-butyl), which feature low-coordinate metal centers and direct metal-metal orbital overlap. X-ray diffraction, electrochemical, magnetic, spectroscopic, and computational analysis elucidate the nature of the bonding interactions in these clusters and the impact of these interactions on the electronic and magnetic properties. Direct orbital overlap results in strongly coupled, large-spin ground states in the [Ni4(NPtBu3)4]+/0 clusters and fully delocalized, spin-correlated electrons. Correlated electronic structure calculations confirm the presence of ferromagnetic ground states that arise from direct exchange between magnetic orbitals, and, in the case of the neutral cluster, itinerant electron magnetism similar to that in metallic ferromagnets. The cationic nickel cluster also possesses large magnetic anisotropy exemplified by a large, positive axial zero-field splitting parameter of D = +7.95 or +9.2 cm-1, as determined by magnetometry or electron paramagnetic resonance spectroscopy, respectively. The [Ni4(NPtBu3)4]+ cluster is also the first molecule with easy-plane magnetic anisotropy to exhibit zero-field slow magnetic relaxation, and under a small applied field, it exhibits relaxation exclusively through an Orbach mechanism with a spin relaxation barrier of 16 cm-1. The S = 1/2 complex [Cu4(NPtBu3)4]+ exhibits slow magnetic relaxation via a Raman process on the millisecond time scale, supporting the presence of slow relaxation via an Orbach process in the nickel analogue. Overall, this work highlights the unique electronic and magnetic properties that can be realized in metal clusters featuring direct metal-metal orbital interactions between low-coordinate metal centers.

11.
J Am Chem Soc ; 142(4): 1864-1870, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884789

RESUMO

Single-crystal cryogenic X-ray diffraction at 6 K, electron paramagnetic resonance spectroscopy, and correlated electronic structure calculations are combined to shed light on the nature of the metal-tris(aryloxide) and η2-H, C metal-alkane interactions in the [((t·BuArO)3tacn)UIII(Mecy-C6)]·(Mecy-C6) adduct. An analysis of the ligand field experienced by the uranium center using ab initio ligand field theory in combination with the angular overlap model yields rather unusual U-OArO and U-Ntacn bonding parameters for the metal-tris(aryloxide) interaction. These parameters are incompatible with the concept of σ and π metal-ligand overlap. For that reason, it is deduced that metal-ligand bonding in the [((t·BuArO)3tacn)UIII] moiety is predominantly ionic. The bonding interaction within the [((t·BuArO)3tacn)UIII] moiety is shown to be dispersive in nature and essentially supported by the upper-rim tBu groups of the (t·BuArO)3tacn3- ligand. Our findings indicate that the axial alkane molecule is held in place by the guest-host effect rather than direct metal-alkane ionic or covalent interactions.

12.
J Phys Chem A ; 124(5): 1025-1037, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31977214

RESUMO

Over the last few years, ab initio ligand field theory (AILFT) has evolved into an important tool for the extraction of ligand field models from ab initio calculations. The inclusion of dynamic correlation on top of complete active space self-consistent field (CASSCF) reference functions, which is important for accurate results, was so far realized at the level of second-order N-electron valence state perturbation theory (NEVPT2). In this work, we introduce two alternative methods for the inclusion of dynamic correlation into AILFT calculations, the second-order dynamic correlation dressed complete active space method (DCD-CAS(2)) and the Hermitian quasi-degenerate NEVPT2 (HQD-NEVPT2). These methods belong to the class of multistate perturbation theory approaches, which allow for the mixing of CASSCF states under the effect of dynamic correlation (state-mixing). The two new versions of AILFT were tested for a diverse set of transition-metal complexes. It was found that the multistate methods have, compared to NEVPT2, an AILFT fit with smaller root mean square deviations (rmsds) between ab initio and AILFT energies. A comparison of AILFT excitation energies with the experiment shows that for some systems, the agreement gets better at the multistate level because of the smaller rmsds. However, for some systems, the agreement gets worse, which could be attributed to a cancellation of errors at the NEVPT2 level that is partly removed at the multistate level. An investigation of trends in the extracted ligand field parameters shows that at the multistate level, the ligand field splitting Δ gets larger, whereas the Racah parameters B and C get smaller and larger, respectively. An investigation of the reasons for the observed improvement for octahedral CrIII halide complexes shows that the possibility of state-mixing relaxes constraints that are present at the NEVPT2 level and that keep Δ and B from following their individual preferences.

13.
J Am Chem Soc ; 141(7): 2814-2824, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30629883

RESUMO

This Perspective revisits Charles Coulson's famous statement from 1959 "give us insight not numbers" in which he pointed out that accurate computations and chemical understanding often do not go hand in hand. We argue that today, accurate wave function based first-principle calculations can be performed on large molecular systems, while tools are available to interpret the results of these calculations in chemical language. This leads us to modify Coulson's statement to "give us insight and numbers". Examples from organic, inorganic, organometallic and surface chemistry as well as molecular magnetism illustrate the points made.

14.
Eur J Inorg Chem ; 2019(8)2019.
Artigo em Inglês | MEDLINE | ID: mdl-38915816

RESUMO

Co(acac)2(H2O)2 (1, acac = acetylacetonate), a transition metal complex ( S = 3 / 2 ), displays field-induced slow magnetic relaxation as a single-molecule magnet. For 1 and its isotopologues Co(acac)2(D2O)2 (1-d 4 ) and Co(acac-d 7)2(D2O)2 (1-d 18 ) in approximately D 4 h symmetry, zero-field splitting of the ground electronic state leads to two Kramers doublets (KDs): lower energy M S = ± 1 / 2 ϕ 1 , 2 and higher energy M S = ± 3 / 2 ϕ 3 , 4 states. This work employs inelastic neutron scattering (INS), a unique method to probe magnetic transitions, to probe different magnetic excitations in 1-d 4 and 1-d 18 . Direct-geometry, time-of-flight Disk-Chopper Spectrometer (DCS), with applied magnetic fields up to 10 T, has been used to study the intra-KD transition as a result of Zeeman splitting, M S = - 1 / 2   ϕ 1 → M S = + 1 / 2   ϕ 2 , in 1-d 18 . This is a rare study of the M S = - 1 / 2 → M S = + 1 / 2 excitation in transition metal complexes by INS. Indirect-geometry INS spectrometer VISION has been used to probe the inter-KD, ZFS transition, M S = ± 1 / 2 ϕ 1 , 2 → M S = ± 3 / 2 ( ϕ 3 , 4 ) in both 1-d 4 and 1-d 18 , by variable-temperature (VT) properties of this excitation. The INS spectra measured on VISION also give phonon features of the complexes that are well described by periodic DFT phonon calculations.

15.
Angew Chem Int Ed Engl ; 57(11): 2914-2918, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29363236

RESUMO

The D2h -symmetric dinuclear complex anion [U2 F12 ]2- of pastel green Sr[U2 F12 ] shows a hitherto unknown structural feature: The coordination polyhedra around the U atoms are edge-linked monocapped trigonal prisms, the UV atoms are therefore seven-coordinated. This leads to a U-U distance of 3.8913(6) Å. A weak UV -UV interaction is observed for the dinuclear [U2 F12 ]2- complex and described by the antiferromagnetic exchange Jexp of circa -29.9 cm-1 . The crystalline compound can be easily prepared from SrF2 and ß-UF5 in anhydrous hydrogen fluoride (aHF) at room temperature. It was studied by means of single crystal X-ray diffraction, IR, Raman and UV/VIS spectroscopy, magnetic measurements, and by molecular as well as by solid-state quantum chemical calculations.

16.
Chemistry ; 23(47): 11244-11248, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28653317

RESUMO

Heavy 5d elements, like osmium, feature strong spin-orbit interactions which are at the origin of exotic physical behaviors. Revealing the full potential of, for example, novel osmium oxide materials ("osmates") is however contingent upon a detailed understanding of the local single-ion properties. Herein, two molecular osmate analogues, [OsF6 ]2- and [OsF6 ]- , are reported as model systems for Os4+ and Os5+ centers found in oxides. Using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) techniques, combined with state-of-the-art ab initio calculations, their ground state was elucidated; mirroring the osmium electronic structure in osmates. The realization of such molecular model systems provides a unique chemical playground to engineer materials exhibiting spin-orbit entangled phenomena.

17.
Inorg Chem ; 56(15): 8802-8816, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28708410

RESUMO

Actinide chemistry is gaining increased focus in modern research, particularly in the fields of energy research and molecular magnetism. However, the structure-function and structure-property relationships of actinides have still not been studied as intensely as those for transition metals. In this work, we report a detailed ab initio study of the spectroscopic, magnetic, and bonding properties of the trivalent actinide free ions and their associated hexachloride complexes in octahedral symmetry. The electronic structures of these systems are examined using complete active-space self-consistent-field calculations followed by second-order N-electron valence perturbation theory, including both scalar relativistic and spin-orbit-coupling effects. The computed energies and wave functions are further analyzed by means of ab initio ligand-field theory (AILFT) and finally chemically interpreted by means of the angular overlap model (AOM). The derived Slater-Condon and spin-orbit parameters have allowed us to systematically rationalize the spectroscopic and magnetic properties of the investigated free ions and complexes along the entire actinide series. Overall, the AILFT- and AOM-derived parameters accurately reproduce the multireference electronic structure calculations. The small observed discrepancies with respect to experimentally derived ligand-field parameters are essentially due to an underestimation of the electronic correlation, which arises from both the constrained size of the active space (restricted to the f orbitals) and the limit of the perturbation approach to account for dynamical correlation. Our analysis also provides insight into the metal-ligand covalency trends along the series. Consistent with natural population analysis, the nephelauxetic (Slater-Condon parameters) and relativistic nephelauxetic (spin-orbit-coupling) reductions determined for these complexes indicate a decrease in the covalency along the series. These trends also hold, to varying extents, for the corresponding tetravalent derivatives, as well as the lanthanide analogues.

18.
Inorg Chem ; 56(5): 3102-3118, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28225611

RESUMO

The magnetic properties of pseudotetrahedral Co(II) complexes spawned intense interest after (PPh4)2[Co(SPh)4] was shown to be the first mononuclear transition-metal complex displaying slow relaxation of the magnetization in the absence of a direct current magnetic field. However, there are differing reports on its fundamental magnetic spin Hamiltonian (SH) parameters, which arise from inherent experimental challenges in detecting large zero-field splittings. There are also remarkable changes in the SH parameters of [Co(SPh)4]2- upon structural variations, depending on the counterion and crystallization conditions. In this work, four complementary experimental techniques are utilized to unambiguously determine the SH parameters for two different salts of [Co(SPh)4]2-: (PPh4)2[Co(SPh)4] (1) and (NEt4)2[Co(SPh)4] (2). The characterization methods employed include multifield SQUID magnetometry, high-field/high-frequency electron paramagnetic resonance (HF-EPR), variable-field variable-temperature magnetic circular dichroism (VTVH-MCD), and frequency domain Fourier transform THz-EPR (FD-FT THz-EPR). Notably, the paramagnetic Co(II) complex [Co(SPh)4]2- shows strong axial magnetic anisotropy in 1, with D = -55(1) cm-1 and E/D = 0.00(3), but rhombic anisotropy is seen for 2, with D = +11(1) cm-1 and E/D = 0.18(3). Multireference ab initio CASSCF/NEVPT2 calculations enable interpretation of the remarkable variation of D and its dependence on the electronic structure and geometry.

19.
Inorg Chem ; 56(9): 5253-5265, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402661

RESUMO

Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl- or NCS- as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm-1. Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.

20.
Inorg Chem ; 56(14): 8203-8211, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28653856

RESUMO

Ligand field spectra provide direct information about the electronic structure of transition metal complexes. However, these spectra are difficult to measure by conventional optical techniques due to small cross sections for d-to-d transitions and instrumental limitations below 4000 cm-1. 2p3d resonant inelastic X-ray scattering (RIXS) is a second order process that utilizes dipole allowed 2p to 3d transitions to access d-d excited states. The measurement of ligand field excitation spectra by RIXS is demonstrated for a series of tetrahedral and octahedral Fe(II) and Fe(III) chlorides, which are denoted Fe(III)-Td, Fe(II)-Td, Fe(III)-Oh, and Fe(II)-Oh. The strong 2p spin-orbit coupling allows the measurement of spin forbidden transitions in RIXS spectroscopy. The Fe(III) spectra are dominated by transitions from the sextet ground state to quartet excited states, and the Fe(II) spectra contain transitions to triplet states in addition to the spin allowed 5Γ â†’ 5Γ transition. Each experimental spectrum is simulated using a ligand field multiplet model to extract the ligand field splitting parameter 10Dq and the Racah parameters B and C. The 10Dq values for Fe(III)-Td, Fe(II)-Td, and Fe(III)-Oh are found to be -0.7, -0.32, and 1.47 eV, respectively. In the case of Fe(II)-Oh, a single 10Dq parameter cannot be assigned because Fe(II)-Oh is a coordination polymer exhibiting axially compressed Fe(II)Cl 6 units. The 5T → 5E transition is split by the axial compression resulting in features at 0.51 and 0.88 eV. The present study forms the foundation for future applications of 2p3d RIXS to molecular iron sites in more complex systems, including iron-based catalysts and enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA