RESUMO
A high-resolution x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed x-ray streak camera. The resulting streaked imager achieves spatial and temporal resolutions of approximately 5 microm and approximately 10 ps, respectively. The HXRI has recorded enhanced spatial and temporal resolution radiographs of indirectly driven targets on OMEGA. This paper describes the main features of the instrument and details the activation process on OMEGA (particularly the alignment). Recent results obtained on joint CEA/LLE radiographic OMEGA experiments will also be presented.
RESUMO
The diagnostic designs for the Laser Megajoule (LMJ) will require components to operate in environments far more severe than those encountered in present facilities. This harsh environment will be induced by fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiations, and, in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced today on existing facilities. The lessons learned about the vulnerabilities of present diagnostic parts fielded mainly on OMEGA for many years, have been very useful guide for the design of future LMJ diagnostics. The present and future LMJ diagnostic designs including this vulnerability approach and their main mitigation techniques will be presented together with the main characteristics of the LMJ facility that provide for diagnostic protection.