Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Exp Bot ; 74(5): 1448-1459, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512646

RESUMO

MADS-box transcription factors are important regulators of floral organ identity through their binding to specific motifs, termed CArG, in the promoter of their target genes. Petal initiation and development depend on class A and B genes, but MADS-box genes of the APETALA3 (AP3) clade are key regulators of this process. In the early diverging eudicot Nigella damascena, an apetalous [T] morph is characterized by the lack of expression of the NdAP3-3 gene, with its expression being petal-specific in the wild-type [P] morph. All [T] morph plants are homozygous for an NdAP3-3 allele with a Miniature Inverted-repeat Transposable Element (MITE) insertion in the second intron of the gene. Here, we investigated to which extent the MITE insertion impairs regulation of the NdAP3-3 gene. We found that expression of NdAP3-3 is initiated in the [T] morph, but the MITE insertion prevents its positive self-maintenance by affecting the correct splicing of the mRNA. We also found specific CArG features in the promoter of the NdAP3-3 genes with petal-specific expression. However, they are not sufficient to drive expression only in petals of transgenic Arabidopsis, highlighting the existence of Nigella-specific cis/trans-acting factors in regulating AP3 paralogs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nigella damascena , Nigella damascena/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Arabidopsis/metabolismo , Flores , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240260

RESUMO

UDP-glucose (UDPG) pyrophosphorylase (UGPase) catalyzes a reversible reaction, producing UDPG, which serves as an essential precursor for hundreds of glycosyltransferases in all organisms. In this study, activities of purified UGPases from sugarcane and barley were found to be reversibly redox modulated in vitro through oxidation by hydrogen peroxide or oxidized glutathione (GSSG) and through reduction by dithiothreitol or glutathione. Generally, while oxidative treatment decreased UGPase activity, a subsequent reduction restored the activity. The oxidized enzyme had increased Km values with substrates, especially pyrophosphate. The increased Km values were also observed, regardless of redox status, for UGPase cysteine mutants (Cys102Ser and Cys99Ser for sugarcane and barley UGPases, respectively). However, activities and substrate affinities (Kms) of sugarcane Cys102Ser mutant, but not barley Cys99Ser, were still prone to redox modulation. The data suggest that plant UGPase is subject to redox control primarily via changes in the redox status of a single cysteine. Other cysteines may also, to some extent, contribute to UGPase redox status, as seen for sugarcane enzymes. The results are discussed with respect to earlier reported details of redox modulation of eukaryotic UGPases and regarding the structure/function properties of these proteins.


Assuntos
Cisteína , Uridina Difosfato Glucose , Sequência de Aminoácidos , Uridina Difosfato Glucose/metabolismo , Cisteína/metabolismo , Plantas/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Glucose , Oxirredução
3.
PLoS One ; 17(8): e0273695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040902

RESUMO

Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.


Assuntos
Proteínas de Arabidopsis , Metilação de DNA , Proteínas de Arabidopsis/genética , DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Zea mays/genética , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA