Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 44(7): 403-16, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22337903

RESUMO

Staphylococcus aureus is a prevalent pathogen for mastitis in dairy ruminants and is responsible for both clinical and subclinical mastitis. Mammary epithelial cells (MEC) represent not only a physical barrier against bacterial invasion but are also active players of the innate immune response permitting infection clearance. To decipher their functions in general and in animals showing different levels of genetic predisposition to Staphylococcus in particular, MEC from ewes undergoing a divergent selection on milk somatic cell count were stimulated by S. aureus. MEC response was also studied according to the stimulation condition with live bacteria or culture supernatant. The early MEC response was studied during a 5 h time course by microarray to identify differentially expressed genes with regard to the host genetic background and as a function of the conditions of stimulation. In both conditions of stimulation, metabolic processes were altered, the apoptosis-associated pathways were considerably modified, and inflammatory and immune responses were enhanced with the upregulation of il1a, il1b, and tnfa and several chemokines known to enhance neutrophil (cxcl8) or mononuclear leukocyte (ccl20) recruitment. Genes associated with oxidative stress were increased after live bacteria stimulation, whereas immune response-related genes were higher after supernatant stimulation in the early phase. Only 20 genes were differentially expressed between Staphylococcus spp-mastitis resistant and susceptible animals without any clearly defined role on the control of infection. To conclude, this suggests that MEC may not represent the cell type at the origin of the difference of mastitis susceptibility, at least as demonstrated in our genetic model. Supernatant or heat-killed S. aureus produce biological effects that are essentially different from those induced by live bacteria.


Assuntos
Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Glândulas Mamárias Animais/patologia , Mastite/veterinária , Ovinos/genética , Staphylococcus aureus/fisiologia , Animais , Análise por Conglomerados , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Redes Reguladoras de Genes/genética , Glândulas Mamárias Animais/microbiologia , Mastite/genética , Mastite/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos/microbiologia , Frações Subcelulares/metabolismo
2.
BMC Genomics ; 12: 208, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21527017

RESUMO

BACKGROUND: The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by Staphylococcus spp. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by S. epidermidis and S. aureus was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance. RESULTS: The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by S. aureus than S. epidermidis. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line. CONCLUSIONS: Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility towards Staphylococcus infections, and opens new fields for further investigation.


Assuntos
Perfilação da Expressão Gênica , Imunidade Inata , Mastite/veterinária , Leite/citologia , Doenças dos Ovinos/genética , Infecções Estafilocócicas/veterinária , Staphylococcus aureus , Staphylococcus epidermidis , Animais , Carga Bacteriana , Contagem de Células , Análise por Conglomerados , Feminino , Redes Reguladoras de Genes , Leucócitos/patologia , Mastite/genética , Mastite/imunologia , Mastite/microbiologia , Redes e Vias Metabólicas , Leite/imunologia , Leite/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia
3.
PLoS One ; 6(8): e22147, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21857913

RESUMO

BACKGROUND: Staphylococcus aureus is a major pathogen of humans and animals and emerging antibiotic-resistant strains have further increased the concern of this health issue. Host genetics influence susceptibility to S. aureus infections, and the genes determining the outcome of infections should be identified to find alternative therapies to treatment with antibiotics. Here, we used outbred animals from a divergent selection based on susceptibility towards Staphylococcus infection to explore host immunogenetics. METHODOLOGY/PRINCIPAL FINDINGS: We investigated how dendritic cells respond to heat-inactivated S. aureus and whether dendritic cells from animals showing different degrees of susceptibility had distinct gene expression profiles. We measured gene expression levels of in vitro S. aureus-stimulated bone marrow-derived dendritic cells at three different time points (0, 3 and 8 hrs) by using 15 k ovine Agilent microarrays. Furthermore, differential expression of a selected number of genes was confirmed by RT-qPCR. Gene signatures of stimulated DCs were obtained and showed that genes involved in the inflammatory process and T helper cell polarization were highly up-regulated upon stimulation. Moreover, a set of 204 genes were statistically differentially expressed between susceptible and resistant animals, and grouped them according to their predisposition to staphylococcal infection. Interestingly, over-expression of the C1q and Ido1 genes was observed in the resistant line and suggested a role of classical pathway of complement and early regulation of inflammation pathways, respectively. On the contrary, over expression of genes involved in the IL1R pathway was observed in susceptible animals. Furthermore, the leucocyte extravasation pathway was also found to be dominant in the susceptible line. CONCLUSION/SIGNIFICANCE: We successfully obtained Staphylococcus aureus associated gene expression of ovine BM-DC in an 8-hour kinetics experiment. The distinct transcriptional profiles of dendritic cells obtained from resistant and susceptible animals may explain susceptibility towards S. aureus infections in a broader context.


Assuntos
Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Resistência à Doença/genética , Feminino , Predisposição Genética para Doença/genética , Interações Hospedeiro-Patógeno , Temperatura Alta , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Vacinas Atenuadas/imunologia
4.
Genet Sel Evol ; 38(2): 183-200, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16492374

RESUMO

The milking ability of Lacaune ewes was characterised by derived traits of milk flow patterns, in an INRA experimental farm, from a divergent selection experiment in order to estimate the correlated effects of selection for protein and fat yields. The analysis of selected divergent line effects (involving 34 616 data and 1204 ewes) indicated an indirect improvement of milking traits (+17% for maximum milk flow and -10% for latency time) with a 25% increase in milk yield. Genetic parameters were estimated by multi-trait analysis with an animal model, on 751 primiparous ewes. The heritabilities of the traits expressed on an annual basis were high, especially for maximum flow (0.54) and for latency time (0.55). The heritabilities were intermediate for average flow (0.30), time at maximum flow (0.42) and phase of increasing flow (0.43), and low for the phase of decreasing flow (0.16) and the plateau of high flow (0.07). When considering test-day data, the heritabilities of maximum flow and latency time remained intermediate and stable throughout the lactation. Genetic correlations between milk yield and milking traits were all favourable, but latency time was less milk yield dependent (-0.22) than maximum flow (+0.46). It is concluded that the current dairy ewe selection based on milk solid yield is not antagonistic to milking ability.


Assuntos
Lactação/genética , Característica Quantitativa Herdável , Seleção Genética , Ovinos/fisiologia , Animais , Indústria de Laticínios , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA