Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 21, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422000

RESUMO

BACKGROUND: Acinetobacter baumannii is a gram-negative bacterium which causes opportunistic infections in immunocompromised hosts. Genome plasticity has given rise to a wide range of strain variation with respect to antimicrobial resistance profiles and expression of virulence factors which lead to altered phenotypes associated with pathogenesis. The purpose of this study was to analyze clinical strains of A. baumannii for phenotypic variation that might correlate with virulence phenotypes, antimicrobial resistance patterns, or strain isolation source. We hypothesized that individual strain virulence phenotypes might be associated with anatomical site of isolation or alterations in susceptibility to antimicrobial interventions. METHODOLOGY: A cohort of 17 clinical isolates of A. baumannii isolated from diverse anatomical sites were evaluated to ascertain phenotypic patterns including biofilm formation, hemolysis, motility, and antimicrobial resistance. Antibiotic susceptibility/resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin was determined. RESULTS: Antibiotic resistance was prevalent in many strains including resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin. All strains tested induced hemolysis on agar plate detection assays. Wound-isolated strains of A. baumannii exhibited higher motility than strains isolated from blood, urine or Foley catheter, or sputum/bronchial wash. A. baumannii strains isolated from patient blood samples formed significantly more biofilm than isolates from wounds, sputum or bronchial wash samples. An inverse relationship between motility and biofilm formation was observed in the cohort of 17 clinical isolates of A. baumannii tested in this study. Motility was also inversely correlated with induction of hemolysis. An inverse correlation was observed between hemolysis and resistance to ticarcillin-k clavulanate, meropenem, and piperacillin. An inverse correlation was also observed between motility and resistance to ampicillin-sulbactam, ceftriaxone, ceftoxamine, ceftazidime, ciprofloxacin, or levofloxacin. CONCLUSIONS: Strain dependent variations in biofilm and motility are associated with anatomical site of isolation. Biofilm and hemolysis production both have an inverse association with motility in the cohort of strains utilized in this study, and motility and hemolysis were inversely correlated with resistance to numerous antibiotics.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/patogenicidade , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Ferimentos e Lesões/microbiologia , Infecções por Acinetobacter/sangue , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Adaptação Fisiológica , Carbapenêmicos/farmacologia , Catéteres/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Piperacilina/farmacologia , Escarro/microbiologia , Tennessee , Urina/microbiologia
2.
J Alzheimers Dis ; 86(1): 5-19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034901

RESUMO

African American/Black adults are twice as likely to have Alzheimer's disease (AD) compared to non-Hispanic White adults. Genetics partially contributes to this disparity in AD risk, among other factors, as there are several genetic variants associated with AD that are more prevalent in individuals of African or European ancestry. The phospholipid-transporting ATPase ABCA7 (ABCA7) gene has stronger associations with AD risk in individuals with African ancestry than in individuals with European ancestry. In fact, ABCA7 has been shown to have a stronger effect size than the apolipoprotein E (APOE) ɛ4 allele in African American/Black adults. ABCA7 is a transmembrane protein involved in lipid homeostasis and phagocytosis. ABCA7 dysfunction is associated with increased amyloid-beta production, reduced amyloid-beta clearance, impaired microglial response to inflammation, and endoplasmic reticulum stress. This review explores the impact of ABCA7 mutations that increase AD risk in African American/Black adults on ABCA7 structure and function and their contributions to AD pathogenesis. The combination of biochemical/biophysical and 'omics-based studies of these variants needed to elucidate their downstream impact and molecular contributions to AD pathogenesis is highlighted.


Assuntos
Doença de Alzheimer , Transportadores de Cassetes de Ligação de ATP/metabolismo , Negro ou Afro-Americano/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Fatores de Risco
3.
ACS Infect Dis ; 7(8): 2116-2126, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34105954

RESUMO

Acinetobacter baumannii is an opportunistic bacterial pathogen that causes severe infections in immunocompromised patients. The emergence of multi- and pan-drug resistant strains of A. baumannii from clinical sources has confounded treatment and enhanced morbidity and mortality associated with these infections. One way that A. baumannii circumnavigates environmental and antimicrobial challenge is by forming tertiary architectural structures of cells known as biofilms. Biofilm-inhibiting molecules could be deployed as a potential chemotherapeutic strategy to inhibit or disrupt A. baumannii biofilms and mitigate adverse outcomes due to infection. Lactoferrin is an innate immune glycoprotein produced in high concentrations in both human and bovine milk which has previously been shown to have antibacterial and antibiofilm activities. We sought to test lactoferrin against a bank of clinical isolates of A. baumannii to determine changes in bacterial growth or biofilm formation. Our results indicate that human lactoferrin has slightly more potent antibacterial activities than bovine lactoferrin against certain strains of A. baumannii and that these effects are associated with anatomical site of isolation. Additionally, we have shown that both bovine and human lactoferrin can inhibit A. baumannii biofilm formation and that these effects are associated with anatomical site of isolation and whether the strain forms robust or weak biofilms.


Assuntos
Acinetobacter baumannii , Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Biofilmes , Bovinos , Humanos , Lactoferrina/farmacologia , Leite Humano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA