Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(20): 29318-29334, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114834

RESUMO

A deep learning (DL) based digital backpropagation (DBP) method with a 1 dB SNR gain over a conventional 1 step per span DBP is demonstrated in a 32 GBd 16QAM transmission across 1200 km. The new DL-DPB is shown to require 6 times less computational power over the conventional DBP scheme. The achievement is possible due to a novel training method in which the DL-DBP is blind to timing error, state of polarization rotation, frequency offset and phase offset. An analysis of the underlying mechanism is given. The applied method first undoes the dispersion, compensates for nonlinear effects in a distributed fashion and reduces the out of band nonlinear modulation due to compensation of the nonlinearities by having a low pass characteristic. We also show that it is sufficient to update the elements of the DL network using a signal with high nonlinearity when dispersion or nonlinearity conditions changes. Lastly, simulation results indicate that the proposed scheme is suitable to deal with impairments from transmission over longer distances.

2.
Opt Express ; 27(21): 29719-29729, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684229

RESUMO

We demonstrate all-metallic grating couplers that enable vertical, compact and broadband fiber-coupling. The grating couplers are based on a metal layer and directly convert a vertical fiber mode into surface plasmon polaritons (SPPs). In combination with a focusing arrangement, the grating couplers require only a small footprint of 13.5 × 12 µm2. We characterize the grating couplers with both periodic and apodized gratings and experimentally show a 1-dB bandwidth of 115 nm with a coupling efficiency of 2.9 dB.

3.
Science ; 358(6363): 630-632, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097545

RESUMO

Plasmonics provides a possible route to overcome both the speed limitations of electronics and the critical dimensions of photonics. We present an all-plasmonic 116-gigabits per second electro-optical modulator in which all the elements-the vertical grating couplers, splitters, polarization rotators, and active section with phase shifters-are included in a single metal layer. The device can be realized on any smooth substrate surface and operates with low energy consumption. Our results show that plasmonics is indeed a viable path to an ultracompact, highest-speed, and low-cost technology that might find many applications in a wide range of fields of sensing and communications because it is compatible with and can be placed on a wide variety of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA