Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Mol Microbiol ; 111(6): 1416-1429, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30548239

RESUMO

The extracellular biofilm matrix often contains a network of amyloid fibers which, in the human opportunistic pathogen Bacillus cereus, includes the two homologous proteins TasA and CalY. We show here, in the closely related entomopathogenic species Bacillus thuringiensis, that CalY also displays a second function. In the early stationary phase of planktonic cultures, CalY was located at the bacterial cell-surface, as shown by immunodetection. Deletion of calY revealed that this protein plays a major role in adhesion to HeLa epithelial cells, to the insect Galleria mellonella hemocytes and in the bacterial virulence against larvae of this insect, suggesting that CalY is a cell-surface adhesin. In mid-stationary phase and in biofilms, the location of CalY shifted from the cell surface to the extracellular medium, where it was found as fibers. The transcription study and the deletion of sipW suggested that CalY change of location is due to a delayed activity of the SipW signal peptidase. Using purified CalY, we found that the protein polymerization occurred only in the presence of cell-surface components. CalY is, therefore, a bifunctional protein, which switches from a cell-surface adhesin activity in early stationary phase, to the production of fibers in mid-stationary phase and in biofilms.


Assuntos
Adesinas Bacterianas/metabolismo , Bacillus thuringiensis/genética , Biofilmes/crescimento & desenvolvimento , Metaloproteases/metabolismo , Fatores de Virulência/metabolismo , Adesinas Bacterianas/genética , Animais , Bacillus thuringiensis/enzimologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Células HeLa , Hemócitos/microbiologia , Humanos , Larva/microbiologia , Metaloproteases/genética , Mariposas/microbiologia , Fatores de Virulência/genética
2.
PLoS Genet ; 13(7): e1006909, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28723971

RESUMO

In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho-null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks.


Assuntos
Proteínas de Bactérias/genética , Fator Rho/genética , Fatores de Transcrição/genética , Terminação da Transcrição Genética , Transcrição Gênica , Bacillus subtilis/genética , Biofilmes/crescimento & desenvolvimento , Movimento Celular/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes/genética , Regiões Promotoras Genéticas , Esporos Bacterianos/genética , Transcriptoma/genética
3.
Appl Environ Microbiol ; 85(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979839

RESUMO

Bacillus velezensis QST713 is widely used as a biological control agent for crop protection and disease suppression. This strain is used industrially in France for the protection of Agaricus bisporus against Trichoderma aggressivum f. europaeum, which causes green mold disease. The efficacy of this biocontrol process was evaluated in a previous study, yet the mode of its action has not been explored under production conditions. In order to decipher the underlying biocontrol mechanisms for effective biofilm formation by strain QST713 in the compost and for the involvement of antimicrobial compounds, we developed a simplified micromodel for the culture of A. bisporus during its early culture cycle. By using this micromodel system, we studied the transcriptional response of strain QST713 in the presence or absence of A. bisporus and/or T. aggressivum in axenic industrial compost. We report the overexpression of several genes of the biocontrol agent involved in biofilm formation in the compost compared to their expression during growth in broth compost extract either in the exponential growth phase (the epsC, blsA, and tapA genes) or in the stationary growth phase (the tapA gene), while a gene encoding a flagellar protein (hag) was underexpressed. We also report the overexpression of Bacillus velezensis QST713 genes related to surfactin (srfAA) and fengycin (fenA) production in the presence of the fungal pathogen in the compost.IMPORTANCE Biocontrol agents are increasingly used to replace chemical pesticides to prevent crop diseases. In the button mushroom field in France, the use of Bacillus velezensis QST713 as a biocontrol agent against the green mold Trichoderma aggressivum has been shown to be efficient. However, the biocontrol mechanisms effective in the Agaricus bisporus/Trichoderma aggressivum/Bacillus velezensis QST713 pathosystem are still unknown. Our paper focuses on the exploration of the bioprotection mechanisms of the biocontrol agent Bacillus velezensis QST713 during culture of the button mushroom (Agaricus bisporus) in a micromodel culture system to study the specific response of strain QST713 in the presence of T. aggressivum and/or A. bisporus.


Assuntos
Anti-Infecciosos/química , Bacillus/química , Bacillus/fisiologia , Biofilmes , Agentes de Controle Biológico/química , Compostagem , Agaricus/fisiologia , Bacillus/genética , Regulação Bacteriana da Expressão Gênica/fisiologia
4.
Mol Syst Biol ; 12(5): 870, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27193784

RESUMO

Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , RNA Mensageiro/metabolismo , Bacillus subtilis/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Modelos Teóricos , Biossíntese de Proteínas , Proteoma/metabolismo , RNA Bacteriano/metabolismo
5.
Metab Eng ; 32: 232-243, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26498510

RESUMO

Predicting resource allocation between cell processes is the primary step towards decoding the evolutionary constraints governing bacterial growth under various conditions. Quantitative prediction at genome-scale remains a computational challenge as current methods are limited by the tractability of the problem or by simplifying hypotheses. Here, we show that the constraint-based modeling method Resource Balance Analysis (RBA), calibrated using genome-wide absolute protein quantification data, accurately predicts resource allocation in the model bacterium Bacillus subtilis for a wide range of growth conditions. The regulation of most cellular processes is consistent with the objective of growth rate maximization except for a few suboptimal processes which likely integrate more complex objectives such as coping with stressful conditions and survival. As a proof of principle by using simulations, we illustrated how calibrated RBA could aid rational design of strains for maximizing protein production, offering new opportunities to investigate design principles in prokaryotes and to exploit them for biotechnological applications.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Simulação por Computador , Engenharia Metabólica/métodos , Alocação de Recursos
6.
Appl Environ Microbiol ; 81(1): 109-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326298

RESUMO

In most habitats, microbial life is organized in biofilms, three-dimensional edifices sustained by extracellular polymeric substances that enable bacteria to resist harsh and changing environments. Under multispecies conditions, bacteria can benefit from the polymers produced by other species ("public goods"), thus improving their survival under toxic conditions. A recent study showed that a Bacillus subtilis hospital isolate (NDmed) was able to protect Staphylococcus aureus from biocide action in multispecies biofilms. In this work, we identified ypqP, a gene whose product is required in NDmed for thick-biofilm formation on submerged surfaces and for resistance to two biocides widely used in hospitals. NDmed and S. aureus formed mixed biofilms, and both their spatial arrangement and pathogen protection were mediated by YpqP. Functional ypqP is present in other natural B. subtilis biofilm-forming isolates. However, the gene is disrupted by the SPß prophage in the weak submerged-biofilm-forming strains NCIB3610 and 168, which are both less resistant than NDmed to the biocides tested. Furthermore, in a 168 laboratory strain cured of the SPß prophage, the reestablishment of a functional ypqP gene led to increased thickness and resistance to biocides of the associated biofilms. We therefore propose that YpqP is a new and important determinant of B. subtilis surface biofilm architecture, protection against exposure to toxic compounds, and social behavior in bacterial communities.


Assuntos
Anti-Infecciosos/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Fagos Bacilares/genética , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Genes Bacterianos , Mutagênese Insercional , Staphylococcus aureus/crescimento & desenvolvimento
7.
Proc Natl Acad Sci U S A ; 109(1): 155-60, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22190493

RESUMO

Assessing gene expression noise in order to obtain mechanistic insights requires accurate quantification of gene expression on many individual cells over a large dynamic range. We used a unique method based on 2-photon fluorescence fluctuation microscopy to measure directly, at the single cell level and with single-molecule sensitivity, the absolute concentration of fluorescent proteins produced from the two Bacillus subtilis promoters that control the switch between glycolysis and gluconeogenesis. We quantified cell-to-cell variations in GFP concentrations in reporter strains grown on glucose or malate, including very weakly transcribed genes under strong catabolite repression. Results revealed strong transcriptional bursting, particularly for the glycolytic promoter. Noise pattern parameters of the two antagonistic promoters controlling the nutrient switch were differentially affected on glycolytic and gluconeogenic carbon sources, discriminating between the different mechanisms that control their activity. Our stochastic model for the transcription events reproduced the observed noise patterns and identified the critical parameters responsible for the differences in expression profiles of the promoters. The model also resolved apparent contradictions between in vitro operator affinity and in vivo repressor activity at these promoters. Finally, our results demonstrate that negative feedback is not noise-reducing in the case of strong transcriptional bursting.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Carbono/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Genéticos
8.
Proc Natl Acad Sci U S A ; 109(32): 13088-93, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22773813

RESUMO

Bacteria grow in either planktonic form or as biofilms, which are attached to either inert or biological surfaces. Both growth forms are highly relevant states in nature and of paramount scientific focus. However, interchanges between bacteria in these two states have been little explored. We discovered that a subpopulation of planktonic bacilli is propelled by flagella to tunnel deep within a biofilm structure. Swimmers create transient pores that increase macromolecular transfer within the biofilm. Irrigation of the biofilm by swimmer bacteria may improve biofilm bacterial fitness by increasing nutrient flow in the matrix. However, we show that the opposite may also occur (i.e., swimmers can exacerbate killing of biofilm bacteria by facilitating penetration of toxic substances from the environment). We combined these observations with the fact that numerous bacteria produce antimicrobial substances in nature. We hypothesized and proved that motile bacilli expressing a bactericide can also kill a heterologous biofilm population, Staphylococcus aureus in this case, and then occupy the newly created space. These findings identify microbial motility as a determinant of the biofilm landscape and add motility to the complement of traits contributing to rapid alterations in biofilm populations.


Assuntos
Bacillus thuringiensis/fisiologia , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Locomoção/fisiologia , Interações Microbianas/fisiologia , Bacillus thuringiensis/metabolismo , Fluoresceína-5-Isotiocianato , Proteínas de Fluorescência Verde , Cinética , Lisostafina/metabolismo , Microscopia de Fluorescência , Especificidade da Espécie , Staphylococcus aureus/efeitos dos fármacos , Fatores de Tempo , Imagem com Lapso de Tempo
9.
BMC Biol ; 12: 17, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24580833

RESUMO

BACKGROUND: Many organisms coordinate cell growth and division through size control mechanisms: cells must reach a critical size to trigger a cell cycle event. Bacterial division is often assumed to be controlled in this way, but experimental evidence to support this assumption is still lacking. Theoretical arguments show that size control is required to maintain size homeostasis in the case of exponential growth of individual cells. Nevertheless, if the growth law deviates slightly from exponential for very small cells, homeostasis can be maintained with a simple 'timer' triggering division. Therefore, deciding whether division control in bacteria relies on a 'timer' or 'sizer' mechanism requires quantitative comparisons between models and data. RESULTS: The timer and sizer hypotheses find a natural expression in models based on partial differential equations. Here we test these models with recent data on single-cell growth of Escherichia coli. We demonstrate that a size-independent timer mechanism for division control, though theoretically possible, is quantitatively incompatible with the data and extremely sensitive to slight variations in the growth law. In contrast, a sizer model is robust and fits the data well. In addition, we tested the effect of variability in individual growth rates and noise in septum positioning and found that size control is robust to this phenotypic noise. CONCLUSIONS: Confrontations between cell cycle models and data usually suffer from a lack of high-quality data and suitable statistical estimation techniques. Here we overcome these limitations by using high precision measurements of tens of thousands of single bacterial cells combined with recent statistical inference methods to estimate the division rate within the models. We therefore provide the first precise quantitative assessment of different cell cycle models.


Assuntos
Divisão Celular , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Modelos Biológicos , Fenótipo , Fatores de Tempo
10.
Mol Syst Biol ; 9: 709, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24281055

RESUMO

One of the key ways in which microbes are thought to regulate their metabolism is by modulating the availability of enzymes through transcriptional regulation. However, the limited success of efforts to manipulate metabolic fluxes by rewiring the transcriptional network has cast doubt on the idea that transcript abundance controls metabolic fluxes. In this study, we investigate control of metabolic flux in the model bacterium Bacillus subtilis by quantifying fluxes, transcripts, and metabolites in eight metabolic states enforced by different environmental conditions. We find that most enzymes whose flux switches between on and off states, such as those involved in substrate uptake, exhibit large corresponding transcriptional changes. However, for the majority of enzymes in central metabolism, enzyme concentrations were insufficient to explain the observed fluxes--only for a number of reactions in the tricarboxylic acid cycle were enzyme changes approximately proportional to flux changes. Surprisingly, substrate changes revealed by metabolomics were also insufficient to explain observed fluxes, leaving a large role for allosteric regulation and enzyme modification in the control of metabolic fluxes.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , RNA Mensageiro/genética , Isótopos de Carbono , Cinética , RNA Mensageiro/metabolismo , Transcrição Gênica
11.
J Biol Chem ; 287(33): 27959-70, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22740702

RESUMO

In their natural habitat, microorganisms are typically confronted with nutritional limitations that restrict growth and force them to persevere in a stationary phase. Despite the importance of this phase, little is known about the metabolic state(s) that sustains it. Here, we investigate metabolically active but non-growing Bacillus subtilis during nitrogen starvation. In the absence of biomass formation as the major NADPH sink, the intracellular flux distribution in these resting B. subtilis reveals a large apparent catabolic NADPH overproduction of 5.0 ± 0.6 mmol g(-1)h(-1) that was partly caused by high pentose phosphate pathway fluxes. Combining transcriptome analysis, stationary (13)C-flux analysis in metabolic deletion mutants, (2)H-labeling experiments, and kinetic flux profiling, we demonstrate that about half of the catabolic excess NADPH is oxidized by two transhydrogenation cycles, i.e. isoenzyme pairs of dehydrogenases with different cofactor specificities that operate in reverse directions. These transhydrogenation cycles were constituted by the combined activities of the glyceraldehyde 3-phosphate dehydrogenases GapA/GapB and the malic enzymes MalS/YtsJ. At least an additional 6% of the overproduced NADPH is reoxidized by continuous cycling between ana- and catabolism of glutamate. Furthermore, in vitro enzyme data show that a not yet identified transhydrogenase could potentially reoxidize ∼20% of the overproduced NADPH. Overall, we demonstrate the interplay between several metabolic mechanisms that concertedly enable network-wide NADPH homeostasis under conditions of high catabolic NADPH production in the absence of cell growth in B. subtilis.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Metabolismo Energético/fisiologia , NADP/metabolismo , Transcriptoma , Bacillus subtilis/genética , Isótopos de Carbono/metabolismo , Oxirredução
12.
Bioinformatics ; 28(20): 2705-6, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22764159

RESUMO

UNLABELLED: Live Cell Array (LCA) technology allows the acquisition of high-resolution time-course profiles of bacterial gene expression by the systematic assessment of fluorescence in living cells carrying either transcriptional or translational fluorescent protein fusion. However, the direct estimation of promoter activities by time-dependent derivation of the fluorescence datasets generates high levels of noise. Here, we present BasyLiCA, a user-friendly open-source interface and database dedicated to the automatic storage and standardized treatment of LCA data. Data quality reports are generated automatically. Growth rates and promoter activities are calculated by tunable discrete Kalman filters that can be set to incorporate data from biological replicates, significantly reducing the impact of noise measurement in activity estimations. AVAILABILITY: The BasyLiCA software and the related documentation are available at http://genome.jouy.inra.fr/basylica.


Assuntos
Bactérias/genética , Software , Transcrição Gênica , Bactérias/metabolismo , Corantes Fluorescentes , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Regiões Promotoras Genéticas
13.
Nucleic Acids Res ; 39(10): 4360-72, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21278164

RESUMO

Each family of signal transduction systems requires specificity determinants that link individual signals to the correct regulatory output. In Bacillus subtilis, a family of four anti-terminator proteins controls the expression of genes for the utilisation of alternative sugars. These regulatory systems contain the anti-terminator proteins and a RNA structure, the RNA anti-terminator (RAT) that is bound by the anti-terminator proteins. We have studied three of these proteins (SacT, SacY, and LicT) to understand how they can transmit a specific signal in spite of their strong structural homology. A screen for random mutations that render SacT capable to bind a RNA structure recognized by LicT only revealed a substitution (P26S) at one of the few non-conserved residues that are in contact with the RNA. We have randomly modified this position in SacT together with another non-conserved RNA-contacting residue (Q31). Surprisingly, the mutant proteins could bind all RAT structures that are present in B. subtilis. In a complementary approach, reciprocal amino acid exchanges have been introduced in LicT and SacY at non-conserved positions of the RNA-binding site. This analysis revealed the key role of an arginine side-chain for both the high affinity and specificity of LicT for its cognate RAT. Introduction of this Arg at the equivalent position of SacY (A26) increased the RNA binding in vitro but also resulted in a relaxed specificity. Altogether our results suggest that this family of anti-termination proteins has evolved to reach a compromise between RNA binding efficacy and specific interaction with individual target sequences.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a RNA/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Biofilm ; 4: 100065, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024609

RESUMO

Bacillus subtilis is a widely used bacterial model to decipher biofilm formation, genetic determinants and their regulation. For several years, studies were conducted on colonies or pellicles formed at the interface with air, but more recent works showed that non-domesticated strains were able to form thick and structured biofilms on submerged surfaces. Taking advantage of time-lapse confocal laser scanning microscopy, we monitored bacterial colonization on the surface and observed an unexpected biphasic submerged biofilm development. Cells adhering to the surface firstly form elongated chains before being suddenly fragmented and released as free motile cells in the medium. This switching coincided with an oxygen depletion in the well which preceded the formation of the pellicle at the liquid-air interface. Residual bacteria still associated with the solid surface at the bottom of the well started to express matrix genes under anaerobic metabolism to build the typical biofilm protruding structures.

15.
J Bacteriol ; 193(24): 6939-49, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001508

RESUMO

Most organisms can choose their preferred carbon source from a mixture of nutrients. This process is called carbon catabolite repression. The Gram-positive bacterium Bacillus subtilis uses glucose as the preferred source of carbon and energy. Glucose-mediated catabolite repression is caused by binding of the CcpA transcription factor to the promoter regions of catabolic operons. CcpA binds DNA upon interaction with its cofactors HPr(Ser-P) and Crh(Ser-P). The formation of the cofactors is catalyzed by the metabolite-activated HPr kinase/phosphorylase. Recently, it has been shown that malate is a second preferred carbon source for B. subtilis that also causes catabolite repression. In this work, we addressed the mechanism by which malate causes catabolite repression. Genetic analyses revealed that malate-dependent catabolite repression requires CcpA and its cofactors. Moreover, we demonstrate that HPr(Ser-P) is present in malate-grown cells and that CcpA and HPr interact in vivo in the presence of glucose or malate but not in the absence of a repressing carbon source. The formation of the cofactor HPr(Ser-P) could be attributed to the concentrations of ATP and fructose 1,6-bisphosphate in cells growing with malate. Both metabolites are available at concentrations that are sufficient to stimulate HPr kinase activity. The adaptation of cells to environmental changes requires dynamic metabolic and regulatory adjustments. The repression strength of target promoters was similar to that observed in steady-state growth conditions, although it took somewhat longer to reach the second steady-state of expression when cells were shifted to malate.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Repressão Catabólica , Malatos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética
16.
J Biol Chem ; 285(3): 1587-96, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19917605

RESUMO

Commonly glucose is considered to be the only preferred substrate in Bacillus subtilis whose presence represses utilization of other alternative substrates. Because recent data indicate that malate might be an exception, we quantify here the carbon source utilization hierarchy. Based on physiology and transcriptional data during co-utilization experiments with eight carbon substrates, we demonstrate that malate is a second preferred carbon source for B. subtilis, which is rapidly co-utilized with glucose and strongly represses the uptake of alternative substrates. From the different hierarchy and degree of catabolite repression exerted by glucose and malate, we conclude that both substrates might act through different molecular mechanisms. To obtain a quantitative and functional network view of how malate is (co)metabolized, we developed a novel approach to metabolic flux analysis that avoids error-prone, intuitive, and ad hoc decisions on (13)C rearrangements. In particular, we developed a rigorous approach for deriving reaction reversibilities by combining in vivo intracellular metabolite concentrations with a thermodynamic feasibility analysis. The thus-obtained analytical model of metabolism was then used for network-wide isotopologue balancing to estimate the intracellular fluxes. These (13)C-flux data revealed an extraordinarily high malate influx that is primarily catabolized via the gluconeogenic reactions and toward overflow metabolism. Furthermore, a considerable NADPH-producing malic enzyme flux is required to supply the biosynthetically required NADPH in the presence of malate. Co-utilization of glucose and malate resulted in a synergistic decrease of the respiratory tricarboxylic acid cycle flux.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Carbono/metabolismo , Malatos/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Isótopos de Carbono , Genes Bacterianos/genética , Glucose/metabolismo , Glucose/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Marcação por Isótopo , Malatos/metabolismo , Especificidade por Substrato , Termodinâmica , Transcrição Gênica/efeitos dos fármacos
17.
Anal Biochem ; 419(2): 250-9, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21907700

RESUMO

Quantification of promoter activity or protein expression in gene regulatory networks is generally achieved via measurement of fluorescent protein (FP) intensity, which is related to the true FP concentration by an unknown scaling factor, thereby limiting analysis and interpretation. Here, using approaches originally developed for eukaryotic cells, we show that two-photon (2p) fluorescence fluctuation microscopy, specifically scanning number and brightness (sN&B) analysis, can be applied to determine the absolute concentrations of diffusing FPs in live bacterial cells. First, we demonstrate the validity of the approach, despite the small size of the bacteria, using the central pixels and spatial averaging. We established the lower detection limit at or below 75 nM (~3 molecules of FP/vol(ex)) and the upper detection limit at approximately 10 µM, which can be extended using intensity measurements. We found that the uncertainty inherent in our measurements (<5%) was smaller than the high cell-cell variations observed for stochastic leakage from FP fusions of the lac promoter in the repressed state or the 10 to 25% variation observed on induction. This demonstrates that a reliable and absolute measure of transcriptional noise can be made using our approach, which should make it particularly appropriate for the investigation of stochasticity in gene expression networks.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Microscopia/métodos , Fótons , Citoplasma/metabolismo , Fluorescência , Isopropiltiogalactosídeo/metabolismo , Limite de Detecção , Proteínas Luminescentes/genética
18.
Microbiologyopen ; 10(6): e1254, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34964290

RESUMO

Interspecific interactions within biofilms determine relative species abundance, growth dynamics, community resilience, and success or failure of invasion by an extraneous organism. However, deciphering interspecific interactions and assessing their contribution to biofilm properties and function remain a challenge. Here, we describe the constitution of a model biofilm composed of four bacterial species belonging to four different genera (Rhodocyclus sp., Pseudomonas fluorescens, Kocuria varians, and Bacillus cereus), derived from a biofilm isolated from an industrial milk pasteurization unit. We demonstrate that the growth dynamics and equilibrium composition of this biofilm are highly reproducible. Based on its equilibrium composition, we show that the establishment of this four-species biofilm is highly robust against initial, transient perturbations but less so towards continuous perturbations. By comparing biofilms formed from different numbers and combinations of the constituent species and by fitting a growth model to the experimental data, we reveal a network of dynamic, positive, and negative interactions that determine the final composition of the biofilm. Furthermore, we reveal that the molecular determinant of one negative interaction is the thiocillin I synthesized by the B. cereus strain, and demonstrate its importance for species distribution and its impact on robustness by mutational analysis of the biofilm ecosystem.


Assuntos
Biofilmes/crescimento & desenvolvimento , Interações Microbianas , Microbiota , Bacillus cereus/fisiologia , Ecossistema , Micrococcaceae/fisiologia , Peptídeos/metabolismo , Plâncton/fisiologia , Pseudomonas fluorescens/fisiologia , Rhodocyclaceae/fisiologia
19.
Microorganisms ; 9(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540517

RESUMO

During biofilm growth, the coexistence of planktonic and sessile cells can lead to dynamic exchanges between the two populations. We have monitored the fate of these populations in glass tube assays, where the Bacillus thuringiensis 407 strain produces a floating pellicle. Time-lapse spectrophotometric measurement methods revealed that the planktonic population grew until the pellicle started to be produced. Thereafter, the planktonic population decreased rapidly down to a value close to zero while the biofilm was in continuous growth, showing no dispersal until 120 h of culture. We found that this decrease was induced by the presence of the pellicle, but did not occur when oxygen availability was limited, suggesting that it was independent of cell death or cell sedimentation and that the entire planktonic population has integrated the biofilm. To follow the distribution of recruited planktonic cells within the pellicle, we tagged planktonic cells with GFP and sessile cells with mCherry. Fluorescence binocular microscopy observations revealed that planktonic cells, injected through a 24-h-aged pellicle, were found only in specific areas of the biofilm, where the density of sessile cells was low, showing that spatial heterogeneity can occur between recruited cells and sessile cells in a monospecies biofilm.

20.
Microbiology (Reading) ; 156(Pt 6): 1600-1608, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20150235

RESUMO

Plasmid pBaSysBioII was constructed for high-throughput analysis of gene expression in Bacillus subtilis. It is an integrative plasmid with a ligation-independent cloning (LIC) site, allowing the generation of transcriptional gfpmut3 fusions with desired promoters. Integration is by a Campbell-type event and is non-mutagenic, placing the fusion at the homologous chromosomal locus. Using phoA, murAA, gapB, ptsG and cggR promoters that are responsive to phosphate availability, growth rate and carbon source, we show that detailed profiles of promoter activity can be established, with responses to changing conditions being measurable within 1 min of the stimulus. This makes pBaSysBioII a highly versatile tool for real-time gene expression analysis in growing cells of B. subtilis.


Assuntos
Bacillus subtilis/genética , Expressão Gênica , Plasmídeos , Bacillus subtilis/metabolismo , Sequência de Bases , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA