Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(21): 7979-7990, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019424

RESUMO

Transition metal doped chalcogenides are one of the most important classes of catalysts that have been attracting increasing attention for petrochemical and energy related chemical transformations due to their unique physiochemical properties. For practical applications, achieving maximum atom utilization by homogeneous dispersion of metals on the surface of chalcogenides is essential. Herein, we report a detailed study of a deposition method using thiourea coordinated transition metal complexes. This method allows the preparation of a library of a wide range of single atoms including both noble and non-noble transition metals (Fe, Co, Ni, Cu, Pt, Pd, Ru) with a metal loading as high as 10 wt % on various ultrathin 2D chalcogenides (MoS2, MoSe2, WS2 and WSe2). As demonstrated by the state-of-the-art characterization, the doped single transition metal atoms interact strongly with surface anions and anion vacancies in the exfoliated 2D materials, leading to high metal dispersion in the absence of agglomeration. Taking Fe on MoS2 as a benchmark, it has been found that Fe is atomically dispersed until 10 wt %, and beyond this loading, formation of coplanar Fe clusters is evident. Atomic Fe, with a high electron density at its conduction band, exhibits a superior intrinsic activity and stability in CO2 hydrogenation to CO per Fe compared to corresponding surface Fe clusters and other Fe catalysts reported for reverse water-gas-shift reactions.

3.
Nat Commun ; 14(1): 647, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746965

RESUMO

Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.

4.
Langmuir ; 28(11): 4908-14, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22356554

RESUMO

The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units.

5.
Nat Commun ; 10(1): 914, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796236

RESUMO

Replacement of Hg with non-toxic Au based catalysts for industrial hydrochlorination of acetylene to vinyl chloride is urgently required. However Au catalysts suffer from progressive deactivation caused by auto-reduction of Au(I) and Au(III) active sites and irreversible aggregation of Au(0) inactive sites. Here we show from synchrotron X-ray absorption, STEM imaging and DFT modelling that the availability of ceria(110) surface renders Au(0)/Au(I) as active pairs. Thus, Au(0) is directly involved in the catalysis. Owing to the strong mediating properties of Ce(IV)/Ce(III) with one electron complementary redox coupling reactions, the ceria promotion to Au catalysts gives enhanced activity and stability. Total pre-reduction of Au species to inactive Au nanoparticles of Au/CeO2&AC when placed in a C2H2/HCl stream can also rapidly rejuvenate. This is dramatically achieved by re-dispersing the Au particles to Au(0) atoms and oxidising to Au(I) entities, whereas Au/AC does not recover from the deactivation.

6.
Dalton Trans ; 46(43): 15070-15079, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29067366

RESUMO

The choice of suitable organometallic precursors, [Re2(C3H5)4] and [Ru(Me-Allyl)2COD] or [Ru(COD)(COT)], allows us to synthesize polyvinylpyrrolidone (PVP) stabilized bimetallic RuRe nanoparticles of ca. 1.3 nm with narrow size dispersity, displaying the hcp crystal structure and to control their chemical order: an alloy or Re rich surface. The structural features of these NPs were determined using complementary characterization techniques (TEM, HRTEM, STEM-HAADF, EDX, WAXS, FT-IR, MAS-NMR and ICP). In particular, surface state investigation based on CO adsorption and oxidation reactions provided useful information of the chemical order in these nanoparticles. The RuRe NPs were obtained as stable colloidal solutions or powders. Surface reactivity studies demonstrated that the alloy type RuRe/PVP NPs show better resistance to oxidation than the ones displaying a Re enriched surface and are more active towards CO dissociation than monometallic Re/PVP NPs as a result of the synergic effect between Ru and Re. Interestingly, the dissociation of CO was not observed with RuRe/PVP NPs displaying a Re enriched surface. Besides the synthetic aspect, this work highlights the crucial influence of the chemical order resulting from the choice of the metal sources in the control of the reactivity of ultra-small metal nanoparticles.

7.
Chem Commun (Camb) ; 50(74): 10809-11, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25087598

RESUMO

Ultra-small monodisperse rhenium nanoparticles (Re NPs; ca. 1.0-1.2 nm) were easily prepared by reducing the organometallic complex [Re2(C3H5)4] under a dihydrogen atmosphere under mild reaction conditions (3 bar H2; 120 °C). The particles can be stabilized by a ligand, hexadecylamine, or a polymer, polyvinylpyrrolidone and accommodate surface hydrides.

8.
Dalton Trans ; 42(2): 372-82, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23070398

RESUMO

Diphenylphosphinobutane (dppb) stabilized bimetallic RuPt nanoparticles were prepared by co-decomposition of [Ru(COD)(COT)] [(1,5-cyclooctadiene)(1,3,5-cyclooctatriene)ruthenium] and [Pt(CH(3))(2)(COD)] [dimethyl(1,5-cyclooctadiene) platinum(II)] organometallic precursors under mild conditions (room temperature, 3 bar of dihydrogen) and in the presence of dppb. The determination of the nanoparticles' chemical composition was made possible thanks to a combination of several characterization techniques (HREM, STEM-HAADF, WAXS, EXAFS, IR, NMR) associated with surface reactivity studies based on simple catalytic reactions. The obtained nanoparticles display a ruthenium rich core and a disordered shell containing both ruthenium and platinum. The results were compared with those obtained on nanoparticles of similar size and composition but not containing ligands. The complexity observed in the present structure of these nanoparticles arises from the high chemical affinity of the diphosphine ligand used as a stabilizer for both metals.

9.
Dalton Trans ; 40(14): 3584-91, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21373677

RESUMO

Rhodium(0) nanoparticles stabilized by tert-butylammonium octanoate were prepared reproducibly from the reduction of rhodium(II) octanoate with tert-butylamine-borane in toluene at room temperature and characterized by ICP-OES, TEM, HRTEM, STEM, EDX, XRD, XPS, FTIR, UV-vis, (11)B, (13)C and (1)H NMR spectroscopy and elemental analysis. These new rhodium(0) nanoparticles show unprecedented catalytic activity, lifetime and reusability as a heterogeneous catalyst in room temperature dehydrogenation of ammonia-borane, which is under significant investigation as a potential hydrogen storage material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA