Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 25(13): 14192-14203, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789005

RESUMO

Directional breaking of the C-H/C-D molecular bond is manipulated in acetylene (C2H2) and deuterated acetylene (C2D2) by waveform controlled few-cycle mid-infrared laser pulses with a central wavelength around 1.6 µm at an intensity of about 8 × 1013 W/cm2. The directionality of the deprotonation of acetylene is controlled by changing the carrier-envelope phase (CEP). The CEP-control can be attributed to the laser-induced superposition of vibrational modes, which is sensitive to the sub-cycle evolution of the laser waveform. Our experiments and simulations indicate that near-resonant, intense mid-infrared pulses permit a higher degree of control of the directionality of the reaction compared to those obtained in near-infrared fields, in particular for the deuterated species.

2.
Phys Rev Lett ; 116(19): 193001, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232019

RESUMO

Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to manipulate the movement of nuclei with tailored light within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely, acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics is monitored using coincident 3D momentum imaging spectroscopy and described with a widely applicable quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wave packet by the intense off-resonant laser field.

3.
Opt Lett ; 39(9): 2595-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784054

RESUMO

We investigate power scaling of ultrashort-pulse enhancement cavities. We propose a model for the sensitivity of a cavity design to thermal deformations of the mirrors due to the high circulating powers. Using this model and optimized cavity mirrors, we demonstrate 400 kW of average power with 250 fs pulses and 670 kW with 10 ps pulses at a central wavelength of 1040 nm and a repetition rate of 250 MHz. These results represent an average power improvement of one order of magnitude compared to state-of-the-art systems with similar pulse durations and will thus benefit numerous applications such as the further scaling of tabletop sources of hard x rays (via Thomson scattering of relativistic electrons) and of soft x rays (via high harmonic generation).

4.
Opt Express ; 18(9): 9173-80, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20588764

RESUMO

We demonstrate the collinear generation of few-femtosecond ultraviolet and attosecond extreme ultraviolet pulses via a combination of third-harmonic and high harmonic generation in noble gases. The ultrashort coherent light bursts are produced by focusing a sub-1.5-cycle near-infrared/visible laser pulse in two subsequent quasi-static noble gas targets. This approach provides an inherently synchronized pair of UV and XUV pulses, where the UV radiation has a photon energy of approximately 5 eV and a pulse energy of up to 1 microJ and the XUV radiation contains up to 3.5 10(6) XUV photons per shot with a photon energy exceeding 100 eV. This source represents a novel tool for future UV pump/XUV probe experiments with unprecedented time-resolution.

5.
Phys Rev Lett ; 105(24): 243902, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21231527

RESUMO

We demonstrate generation of coherent microjoule-scale, low-order harmonic supercontinua in the deep and vacuum ultraviolet (4-9 eV), resulting from the nonlinear transformations of near-single-cycle laser pulses in a gas cell. We show theoretically that their formation is connected to a novel nonlinear regime, holding promise for the generation of powerful deep-UV and vacuum ultraviolet subfemtosecond pulses. Our work opens the route to pump-probe spectroscopy of subfemtosecond-scale valence-shell phenomena in atoms, molecules, and condensed matter.

6.
Nat Commun ; 7: 11717, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27241851

RESUMO

The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.

7.
Nat Commun ; 5: 3800, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24806279

RESUMO

Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform.

8.
Science ; 334(6053): 195-200, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21903778

RESUMO

Manipulation of electron dynamics calls for electromagnetic forces that can be confined to and controlled over sub-femtosecond time intervals. Tailored transients of light fields can provide these forces. We report on the generation of subcycle field transients spanning the infrared, visible, and ultraviolet frequency regimes with a 1.5-octave three-channel optical field synthesizer and their attosecond sampling. To demonstrate applicability, we field-ionized krypton atoms within a single wave crest and launched a valence-shell electron wavepacket with a well-defined initial phase. Half-cycle field excitation and attosecond probing revealed fine details of atomic-scale electron motion, such as the instantaneous rate of tunneling, the initial charge distribution of a valence-shell wavepacket, the attosecond dynamic shift (instantaneous ac Stark shift) of its energy levels, and its few-femtosecond coherent oscillations.

9.
Science ; 328(5986): 1658-62, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20576884

RESUMO

Photoemission from atoms is assumed to occur instantly in response to incident radiation and provides the basis for setting the zero of time in clocking atomic-scale electron motion. We used attosecond metrology to reveal a delay of 21 +/- 5 attoseconds in the emission of electrons liberated from the 2p orbitals of neon atoms with respect to those released from the 2s orbital by the same 100-electron volt light pulse. Small differences in the timing of photoemission from different quantum states provide a probe for modeling many-electron dynamics. Theoretical models refined with the help of attosecond timing metrology may provide insight into electron correlations and allow the setting of the zero of time in atomic-scale chronoscopy with a precision of a few attoseconds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA