RESUMO
RNA editing by adenosine deaminases acting on dsRNA (ADAR) has become of increasing medical relevance, particularly because aberrant ADAR1 activity has been associated with autoimmunity and malignancies. However, the role of ADAR1 in dendritic cells (DC), representing critical professional APCs, is unknown. We have established conditional murine CD11c Cre-mediated ADAR1 gene ablation, which did not induce general apoptosis in CD11c+ cells but instead manifests in cell type-specific effects in DC subpopulations. Bone marrow-derived DC subset analysis revealed an incapacity to differentiate CD103 DC+ in both bulk bone marrow and purified pre-DC lineage progenitor assays. ADAR1 deficiency further resulted in a preferential systemic loss of CD8+/CD103+ DCs, revealing critical dependency on ADAR1, whereas other DC subpopulations were moderately affected or unaffected. Additionally, alveolar macrophages were depleted and dysfunctional, resembling pulmonary alveolar proteinosis. These results reveal an unrecognized role of ADAR1 in DC subset homeostasis and unveils the cell type-specific effects of RNA editing.
Assuntos
Adenosina Desaminase/metabolismo , Células Dendríticas/imunologia , Homeostase/imunologia , Macrófagos Alveolares/imunologia , Animais , Proliferação de Células , Células Dendríticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Edição de RNA , Linfócitos T/citologia , Linfócitos T/imunologiaRESUMO
Tissue-resident mast cells (MCs) are well known for their role in inflammatory responses and allergic and anaphylactic reactions, but they also contribute to processes of arterial remodeling. Although ribosomes and cytosolic RNAs are located around secretory granules in mature MCs, their functional role in MC responses remains unexplored. Previous studies by our group characterized extracellular RNA (eRNA) as an inflammatory and pathogenetic factor in vitro and in vivo. In the present study, RNA-containing MCs and eRNA were located in close proximity to growing collateral arteries in vivo. In vitro, various agonists were found to induce the degranulation of MCs and the concomitant release of eRNA in association with microvesicles (MVs). The liberation of eRNA from MCs was abolished by MC stabilizers or by preventing the increase of intracellular Ca2+ in MCs. eRNA was found to be mainly contained inside MVs, as demonstrated by electron microscopy and immunocytochemistry. The exposure to and the uptake of MC-released MVs by cultured endothelial cells increased their expression of cytokines, such as monocyte chemoattractant protein or IL-6, in a dose- and time-dependent manner. These results indicate that RNA-containing MC-derived MVs are likely to be involved in inflammatory responses, relevant, for example, to processes of vascular remodeling.-Elsemüller, A.-K., Tomalla, V., Gärtner, U., Troidl, K., Jeratsch, S., Graumann, J., Baal, N., Hackstein, H., Lasch, M., Deindl, E., Preissner, K. T., Fischer, S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells.
Assuntos
Células Endoteliais/metabolismo , Inflamação/metabolismo , Mastócitos/metabolismo , Microvasos/metabolismo , RNA Ribossômico/metabolismo , Animais , Degranulação Celular/fisiologia , Linhagem Celular , Micropartículas Derivadas de Células/metabolismo , Citocinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vesículas Secretórias/metabolismoRESUMO
RATIONALE: Acute respiratory distress syndrome is characterized by alveolar epithelial cell injury, edema formation, and intraalveolar contact phase activation. OBJECTIVES: To explore whether C1 esterase inhibitor (C1INH), an endogenous inhibitor of the contact phase, may protect from lung injury in vivo and to decipher the possible underlying mechanisms mediating protection. METHODS: The ability of C1INH to control the inflammatory processes was studied in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: Here, we demonstrate that application of C1INH alleviates bleomycin-induced lung injury via direct interaction with extracellular histones. In vitro, C1INH was found to bind all histone types. Interaction with histones was independent of its protease inhibitory activity, as demonstrated by the use of reactive-center-cleaved C1INH, but dependent on its glycosylation status. C1INH sialylated-N- and -O-glycans were not only essential for its interaction with histones but also to protect against histone-induced cell death. In vivo, histone-C1INH complexes were detected in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome and multiple models of lung injury. Furthermore, reactive-center-cleaved C1INH attenuated pulmonary damage evoked by intravenous histone instillation. CONCLUSIONS: Collectively, C1INH administration provides a new therapeutic option for disorders associated with histone release.
Assuntos
Proteína Inibidora do Complemento C1/farmacologia , Histonas/metabolismo , Lesão Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar , Proteína Inibidora do Complemento C1/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Plasmacytoid dendritic cells (pDC) are of increasing interest in cancer vaccine development, but many functions of these highly specialized, multifaceted cells are poorly understood. The transferrin receptor CD71 has also been suggested to function as an antigen uptake receptor on professional antigen-presenting cells. In this study, we employed multiparameter flow cytometry to investigate CD71 expression on various leukocyte subsets, including DC subsets, granulocytes, macrophages, T and B lymphocytes, γδ T cells, and natural killer cells. Cells from various lymphoid and non-lymphoid murine tissues were analyzed using fluorochrome-conjugated monoclonal antibodies. High CD71 expression (90-100%) was observed, uniquely on pDC amongst the leukocyte populations examined, in both lymphoid and non-lymphoid tissues, including other DC subsets. In contrast, CD71 expression on non-tissue pDC, in the bone marrow and peripheral blood, was reduced. The cause and function of this high tissue pDC-selective CD71 expression remain to be examined.
Assuntos
Antígenos CD/biossíntese , Receptores da Transferrina/biossíntese , Animais , Antígenos CD/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Granulócitos/imunologia , Granulócitos/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Receptores da Transferrina/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismoRESUMO
Extracorporeal photopheresis (ECP) is a widely used clinical cell-based therapy exhibiting efficacy in heterogenous immune-mediated diseases such as cutaneous T cell lymphoma, graft-versus-host disease, and organ allograft rejection. Despite its documented efficacy in cancer immunotherapy, little is known regarding the induction of immunostimulatory mediators by ECP. In this article, we show that ECP promotes marked release of the prototypic immunostimulatory cytokine IL-1ß. ECP primes IL-1ß production and activates IL-1ß maturation and release in the context of caspase-1 activation in monocytes and myeloid dendritic cells. Of interest, IL-1ß maturation by ECP was fully intact in murine cells deficient in caspase-1, suggesting the predominance of an inflammasome-independent pathway for ECP-dependent IL-1ß maturation. Clinically, patient analysis revealed significantly increased IL-1ß production in stimulated leukapheresis concentrates and peripheral blood samples after ECP. Collectively, these results provide evidence for promotion of IL-1ß production by ECP and offer new insight into the immunostimulatory capacity of ECP.
Assuntos
Interleucina-1beta/biossíntese , Interleucina-1beta/sangue , Leucócitos Mononucleares/metabolismo , Fotoferese/métodos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Caspase 1/genética , Caspase 1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/efeitos da radiação , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos da radiação , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/efeitos da radiação , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Metoxaleno/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Raios UltravioletaRESUMO
Plasmacytoid dendritic cells (pDCs) are rare central regulators of antiviral immunity and unsurpassed producers of interferon-α (IFN-α). Despite their crucial role as a link between innate and adaptive immunity, little is known about the modulation of pDC differentiation by other bone marrow (BM) cells. In this study, we investigated the modulation of pDC differentiation in Flt-3 ligand (Flt3L)-supplemented BM cultures, using highly purified mesenchymal stem cells (MSCs) that were FACS-isolated from murine BM based on surface marker expression and used after in vitro expansion. Initial analysis revealed an almost complete inhibition of BM-derived pDC expansion in the presence of >2% MSC. This inhibition was cell contact-dependent and soluble factor-independent, as indicated by trans-well experiments. The abrogation of functional pDC development by MSCs was confirmed after TLR9 stimulation, revealing a complete, contact-dependent suppression of the IFN-a producing capacity of pDCs in Flt3L MSC BM co-cultures. MSC selectively inhibited pDC development in contrast to myeloid DC development, as indicated by the significantly increased numbers of myeloid DC in Flt3L-supplemented BM cultures. The absence of significant MSC-mediated inhibitory effects on myeloid DC differentiation was confirmed by additional experiments in GM-CSF/IL-4-supplemented BM cultures. In summary, we describe a novel contact-dependent immunomodulatory mechanism of MSC that targets the BM-derived expansion of functional pDCs.
Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Interferon-alfa/imunologia , Células-Tronco Mesenquimais/citologia , Animais , Comunicação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Proteínas de Membrana/imunologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor Toll-Like 9/imunologiaRESUMO
BACKGROUND: Numerous studies have described the immunosuppressive capacity of mesenchymal stem cells (MSC) but these studies use mixtures of heterogeneous progenitor cells for in vitro expansion. Recently, multipotent MSC have been prospectively identified in murine bone marrow (BM) on the basis of PDFGRa(+) SCA1(+) CD45(-) TER119(-) (PαS) expression but the immunomodulatory capacity of these MSC is unknown. METHODS: We isolated PαS MSC by high-purity FACS sorting of murine BM and after in vitro expansion we analyzed the in vivo immunomodulatory activity during acute pneumonia. PαS MSC (1 × 10(6)) were applied intratracheally 4 h after acute respiratory Klebsiella pneumoniae induced infection. RESULTS: PαS MSC treatment resulted in significantly reduced alveolitis and protein leakage in comparison to mock-treated controls. PαS MSC-treated mice exhibited significantly reduced alveolar TNF-α and IL-12p70 expression, while IL-10 expression was unaffected. Dissection of respiratory dendritic cell (DC) subsets by multiparameter flow cytometry revealed significantly reduced lung DC infiltration and significantly reduced CD86 costimulatory expression on lung CD103(+) DC in PαS MSC-treated mice. In the post-acute phase of pneumonia, PαS MSC-treated animals exhibited significantly reduced respiratory IL-17(+) CD4(+) T cells and IFN-γ(+) CD4(+) T cells. Moreover, PαS MSC treatment significantly improved overall pneumonia survival and did not increase bacterial load. CONCLUSION: In this study we demonstrated for the first time the feasibility and in vivo immunomodulatory capacity of prospectively defined MSC in pneumonia.
Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Infecções por Klebsiella/cirurgia , Klebsiella pneumoniae/imunologia , Pulmão/imunologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Pneumonia Bacteriana/cirurgia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/microbiologia , Animais , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Separação Celular/métodos , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Modelos Animais de Doenças , Estudos de Viabilidade , Citometria de Fluxo , Mediadores da Inflamação/metabolismo , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Pulmão/metabolismo , Pulmão/microbiologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Fatores de TempoRESUMO
In the epithelium of the lower airways, a cell type of unknown function has been termed "brush cell" because of a distinctive ultrastructural feature, an apical tuft of microvilli. Morphologically similar cells in the nose have been identified as solitary chemosensory cells responding to taste stimuli and triggering trigeminal reflexes. Here we show that brush cells of the mouse trachea express the receptors (Tas2R105, Tas2R108), the downstream signaling molecules (α-gustducin, phospholipase C(ß2)) of bitter taste transduction, the synthesis and packaging machinery for acetylcholine, and are addressed by vagal sensory nerve fibers carrying nicotinic acetylcholine receptors. Tracheal application of an nAChR agonist caused a reduction in breathing frequency. Similarly, cycloheximide, a Tas2R108 agonist, evoked a drop in respiratory rate, being sensitive to nicotinic receptor blockade and epithelium removal. This identifies brush cells as cholinergic sensors of the chemical composition of the lower airway luminal microenvironment that are directly linked to the regulation of respiration.
Assuntos
Células Quimiorreceptoras/metabolismo , Receptores Nicotínicos/metabolismo , Respiração , Traqueia/fisiologia , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Feminino , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Paladar , Traqueia/citologia , Traqueia/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismoRESUMO
BACKGROUND: Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity. METHOD: By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsiella pneumonia infection. RESULTS: Data indicate that pDCs and MoDC were markedly elevated in the post acute pneumonia phase when compared to mock-infected controls. Analysis of draining mediastinal lymph nodes revealed a rapid increase of activated CD103+ DC, CD11b+ DC and MoDC within 48 h post infection. Lung pDC identification during bacterial pneumonia was confirmed by extended phenotyping for 120G8, mPDCA-1 and Siglec-H expression and by demonstration of high Interferon-alpha producing capacity after cell sorting. Cytokine expression analysis of ex vivo-sorted respiratory DC subpopulations from infected animals revealed elevated Interferon-alpha in pDC, elevated IFN-gamma, IL-4 and IL-13 in CD103+ DC and IL-19 and IL-12p35 in CD11b+ DC subsets in comparison to CD11c+ MHC-class IIlow cells indicating distinct functional roles. Antigen-specific naive CD4+ T cell stimulatory capacity of purified respiratory DC subsets was analysed in a model system with purified ovalbumin T cell receptor transgenic naive CD4+ responder T cells and respiratory DC subsets, pulsed with ovalbumin and matured with Klebsiella pneumoniae lysate. CD103+ DC and CD11b+ DC subsets represented the most potent naive CD4+ T helper cell activators. CONCLUSION: These results provide novel insight into the activation of respiratory DC subsets during Klebsiella pneumonia infection. The detection of increased respiratory pDC numbers in bacterial pneumonia may indicate possible novel pDC functions with respect to lung repair and regeneration.
Assuntos
Células Dendríticas/imunologia , Células Dendríticas/patologia , Infecções por Klebsiella/patologia , Klebsiella pneumoniae , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Animais , Antígenos CD/metabolismo , Antígeno B7-2/metabolismo , Antígeno B7-H1/metabolismo , Antígeno CD11b/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Técnicas In Vitro , Cadeias alfa de Integrinas/metabolismo , Infecções por Klebsiella/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Sistema Respiratório/metabolismoRESUMO
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a serious bleeding condition mostly caused by the reaction between maternal anti-HPA-1a antibodies and fetal platelets. This reaction leads to Fc-dependent platelet phagocytosis. Although several serological methods have been developed to identify maternal antibodies, a reliable laboratory parameter as a prognostic tool for FNAIT severity is still lacking. In this study, we developed whole blood platelet phagocytosis assay (WHOPPA), a flow cytometry-based phagocytosis assay that uses a pH-sensitive fluorescent dye (pHrodo-SE) to analyze anti-HPA-1a-dependent platelet phagocytosis in whole blood. WHOPPA revealed a high phagocytosis rate for the anti-HPA-1a opsonized platelets by monocytes but not by neutrophils. Analysis of different monocyte populations showed that all monocyte subsets, including classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocytes, were able to engulf opsonized platelets. A unique monocyte subset, termed shifted monocytes (CD14+CD16-), showed the highest phagocytosis rate and was detected after platelet engulfment. FcγR inhibition tests revealed that except for FcγRIIa, FcγRI and FcγRIII on monocytes were responsible for the phagocytosis of anti-HPA-1a opsonized platelets. Analysis of anti-HPA-1a antibodies from FNAIT cases (n = 7) showed the phagocytosis of HPA-1aa but not of HPA-1bb platelets by monocytes. The phagocytosis rate was highly correlated with bound antibodies measured by flow cytometry (p < 0001; r = 0.9214) and MAIPA assay (p < 0.001; r = 0.7692). The phagocytosis rates were equal for type I and II anti-HPA-1a antibodies recognizing the plexin-semaphoring-integrin (PSI) domain and PSI/epidermal growth factor 1 domain of ß3 integrin, respectively. By contrast, type III anti-HPA-1a antibodies reacting with αvß3 integrin did not induce platelet phagocytosis. Furthermore, effector-silenced mAbs against HPA-1a inhibited the phagocytosis of anti-HPA-1a opsonized platelets. In conclusion, WHOPPA is a reliable in vitro platelet phagocytosis assay that mimics the phagocytosis of anti-HPA-1a opsonized platelets in whole blood. This assay allows to prove platelet phagocytosis ex vivo and evaluate the inhibitory capacity of different inhibitors as therapeutically strategies for the prevention of fetal thrombocytopenia in FNAIT in the future.
Assuntos
Plaquetas , Trombocitopenia Neonatal Aloimune , Humanos , Trombocitopenia Neonatal Aloimune/metabolismo , Testes Imunológicos , Monócitos , FagocitoseRESUMO
BACKGROUND: Inbred mouse strains are used in different models of respiratory diseases but the variation of critical respiratory leukocyte subpopulations across different strains is unknown. METHODS: By using multiparameter flow cytometry we have quantitated respiratory leukocyte subsets including dendritic cells subpopulations, macrophages, classical T and B cells, natural killer cells, γδTCR+ T cells and lineage-negative leukocytes in the five most common inbred mouse strains BALB/c, C57BL/6, DBA/2, 129SV and C3H. To minimize confounding environmental factors, age-matched animals were received from the same provider and were housed under identical specific-pathogen-free conditions. RESULTS: Results revealed significant strain differences with respect to respiratory neutrophils (p=0.005; up to 1.4 fold differences versus C57BL/6 mice), eosinophils (p=0.029; up to 2.7 fold), certain dendritic cell subsets (p≤0.0003; up to 3.4 fold), T (p<0.001; up to 1.6 fold) and B lymphocyte subsets (p=0.005; up to 0.4 fold), γδ T lymphocytes (p=0.003; up to 1.6 fold), natural killer cells (p<0.0001; up to 0.6 fold) and lineage-negative innate leukocytes (p≤0.007; up to 3.6 fold). In contrast, total respiratory leukocytes, macrophages, total dendritic cells and bronchoalveolar lavage leukocytes did not differ significantly. Stimulation of respiratory leukocytes via Toll-like receptor 4 and 9 as well as CD3/CD28 revealed significant strain differences of TNF-α and IL-10 production. CONCLUSION: Our study demonstrates significant strain heterogeneity of respiratory leukocyte subsets that may impact respiratory immunity in different disease models. Additionally, the results may help identification of optimal strains for purification of rare respiratory leukocyte subsets for ex vivo analyses.
Assuntos
Linfócitos B/imunologia , Linfócitos B/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Linfócitos T/imunologia , Linfócitos T/patologia , Animais , Antígenos CD/metabolismo , Linfócitos B/metabolismo , Lavagem Broncoalveolar , Contagem de Células , Células Cultivadas , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Subpopulações de Linfócitos/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Idiopathic lung fibrosis (IPF) is a fatal lung disease characterized by chronic epithelial injury and exhausted repair capacity of the alveolar compartment, associated with the expansion of cells with intermediate alveolar epithelial cell (AT2) characteristics. Using SftpcCreERT2/+: tdTomatoflox/flox mice, we previously identified a lung population of quiescent injury-activated alveolar epithelial progenitors (IAAPs), marked by low expression of the AT2 lineage trace marker tdTomato (Tomlow) and characterized by high levels of Pd-l1 (Cd274) expression. This led us to hypothesize that a population with similar properties exists in the human lung. To that end, we used flow cytometry to characterize the CD274 cell-surface expression in lung epithelial cells isolated from donor and end-stage IPF lungs. The identity and functional behavior of these cells were further characterized by qPCR analysis, in vitro organoid formation, and ex vivo precision-cut lung slices (PCLSs). Our analysis led to the identification of a population of CD274pos cells expressing intermediate levels of SFTPC, which was expanded in IPF lungs. While donor CD274pos cells initiated clone formation, they did not expand significantly in 3D organoids in AT2-supportive conditions. However, an increased number of CD274pos cells was found in cultured PCLS. In conclusion, we demonstrate that, similar to IAAPs in the mouse lung, a population of CD274-expressing cells exists in the normal human lung, and this population is expanded in the IPF lung and in an ex vivo PCLS assay, suggestive of progenitor cell behavior. CD274 function in these cells as a checkpoint inhibitor may be crucial for their progenitor function, suggesting that CD274 inhibition, unless specifically targeted, might further injure the already precarious lung epithelial compartment in IPF.
Assuntos
Antígeno B7-H1/metabolismo , Fibrose Pulmonar Idiopática , Células Epiteliais Alveolares/metabolismo , Animais , Células Epiteliais/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Ligantes , CamundongosRESUMO
Shedding of hyaluronan (HA), the component of endothelial cell (EC) glycocalyx, has been associated with acute lung injury. HA degradation allows plasma proteins and fluid to penetrate across the vascular wall leading to lung edema formation and leukocyte recruitment. Here, we analyzed sHA levels and size in patients with community-acquired pneumonia (CAP) and acute respiratory distress syndrome (ARDS), correlated them to disease severity, and evaluated the impact of pneumolysin (PLY), the Streptococcus pneumoniae (S.p.) exotoxin, on HA shedding from human pulmonary microvascular EC (HPMVEC). sHA levels were elevated in CAP and ARDS and correlated with the CRB65 severity score and with markers of inflammation (interleukin-6), EC activation (E-selectin), and basement membrane destruction (collagen IV). Furthermore, sHA levels were associated with an increase in 28-day mortality. Small and large sHA fragments were detected in plasma of most severe CAP or ARDS patients, and the presence of large sHA fragments was accompanied by the elevated levels of circulating collagen IV. In vitro, PLY induced sHA release from HPMVEC. This effect was dependent on reactive oxygen species (ROS) production and was not associated with endothelial barrier dysfunction. Conversely, HA shedding was impaired following HPMVEC infection with a S.p. PLY-deficient mutant. Our study identifies association between the severity of CAP and ARDS and the levels and size of sHA in plasma. It links sHA levels with, inflammation, EC activation status and basement membrane disassembly in ARDS and provides insights into the mechanism of HA shedding during infection.
Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Humanos , Ácido Hialurônico , Inflamação , Colágeno Tipo IVRESUMO
Germ cell neoplasia in situ (GCNIS) is the noninvasive precursor of testicular germ cell tumors type II, the most common cancer in young men, which originates from embryonic germ cells blocked in their maturation. GCNIS is associated with impaired Sertoli cells (SCs) that express fetal keratin 18 (KRT18) and the pluripotency factor SRY-Box transcription factor 2 (SOX2). According to the current theory concerning the origin of GCNIS, these SCs are prepubertal cells arrested in their maturation due to (epi)genetic anomalies and/or environmental antiandrogens. Thus, they are unable to support the development of germ cells, which leads to their maturational block and further progresses into GCNIS. Alternatively, these SCs are hypothesized to be adult cells dedifferentiating secondarily under the influence of GCNIS. To examine whether tumor cells can dedifferentiate SCs, we established a coculture model of adult human SCs (FS1) and a seminoma cell line similar to GCNIS (TCam-2). After 2 wk of coculture, FS1 cells showed progressive expression of KRT18 and SOX2, mimicking the in vivo changes. TCam-2 cells showed SOX2 expression and upregulation of further pluripotency- and reprogramming-associated genes, suggesting a seminoma to embryonal carcinoma transition. Thus, our FS1/TCam-2 coculture model is a valuable tool for investigating interactions between SCs and seminoma cells. Our immunohistochemical and ultrastructural studies of human testicular biopsies with varying degrees of GCNIS compared to biopsies from fetuses, patients with androgen insensitivity syndrome, and patients showing normal spermatogenesis further suggest that GCNIS-associated SCs represent adult cells undergoing progressive dedifferentiation.
Assuntos
Carcinoma in Situ/etiologia , Carcinoma in Situ/patologia , Suscetibilidade a Doenças , Neoplasias Embrionárias de Células Germinativas/etiologia , Neoplasias Embrionárias de Células Germinativas/patologia , Biomarcadores Tumorais , Carcinoma in Situ/metabolismo , Comunicação Celular , Desdiferenciação Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Regulação da Expressão Gênica , Humanos , Masculino , Estadiamento de Neoplasias , Neoplasias Embrionárias de Células Germinativas/metabolismo , Seminoma/etiologia , Seminoma/metabolismo , Seminoma/patologia , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Células de Sertoli/ultraestruturaRESUMO
Placental vascular development begins very early in pregnancy and is characterized by construction of a primitive vascular network in a low-oxygen environment. In vitro three-component assays of this process are scarce. In this study, a complex three-dimensional spheroid model for in vitro studies of placental vasculogenesis with regard to cell-cell interactions between cytotrophoblasts (CTs), villous stromal cells and endothelial precursor cells was established. Microscopic and immunohistochemical analyses of the spheroids showed structural and differentiation patterns resembling the structure and differentiation of early placental chorionic villous tissue (in regard to the expression of multiple markers cytokeratin-7, vimentin, CD34, CD31). The authenticity of this model to in vivo events allowed investigation of placental vascular development and trophoblast invasion under physiological and pathological conditions. Particularly enhanced spheroidal expression of SDF-1alpha and its receptor CXCR4, the major chemokine system in embryonic vasculogenesis, in a low-oxygen environment was detected. In addition, our model confirmed previously described invasive phenotype of trophoblasts through collagen under low- (physiologic), but not high- (pathologic) oxygen concentrations. Therefore, the three-dimensional spheroid model consisting of major placental cell types proved to be an appropriate system to investigate early placental vessel development under both physiological and pathological conditions.
Assuntos
Neovascularização Fisiológica/fisiologia , Placenta/irrigação sanguínea , Esferoides Celulares/citologia , Trofoblastos/citologia , Adulto , Biomarcadores/metabolismo , Quimiocina CXCL12/metabolismo , Vilosidades Coriônicas/crescimento & desenvolvimento , Vilosidades Coriônicas/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Técnicas In Vitro , Oxigênio/administração & dosagem , Oxigênio/metabolismo , Placentação/fisiologia , Gravidez , Receptores CXCR4/metabolismo , Esferoides Celulares/metabolismo , Trofoblastos/fisiologia , Veias Umbilicais/citologia , Adulto JovemRESUMO
The cellular localization of protein tyrosine phosphatase 51 (PTPIP51) and its in vitro interacting partner protein tyrosine phosphatase 1B (PTP1B) was studied in human placentae of different gestational stages. The expression of PTPIP51 protein and mRNA was observed in the syncytiotrophoblast and cytotrophoblast layer of placentae from the first, second, and third trimesters. In contrast, PTP1B expression was restricted to the syncytiotrophoblast during all gestational stages. Cells of the cytotrophoblasts and parts of the syncytiotrophoblasts expressing high amounts of PTPIP51 were found to execute apoptosis as shown by TdT-mediated dUTP-biotin nick end labeling assay, cytokeratin 18f, and caspase 3 expression. PTPIP51 could also be traced in the endothelium and smooth muscle cells of placental arterial and venous vessels, identified by double immunostainings with antibodies directed against van Willebrand factor and alpha-smooth muscle actin. Some of these cells showing a high PTPIP51 reactivity were Ki67 positive, indicating proliferation. Additionally, a small population of placental CD14-positive macrophages and mesenchymal cells within the villous stroma were detected as PTPIP51 positive. Our data suggest that both proteins, PTPIP51 and PTP1B, play a role in differentiation and apoptosis of the cytotrophoblast and syncytiotrophoblast, respectively. Moreover, PTPIP51 may also serve as a cellular signaling partner in angiogenesis and vascular remodeling.
Assuntos
Proteínas Mitocondriais/biossíntese , Placenta/metabolismo , Gravidez/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , RNA Mensageiro/biossíntese , Apoptose , Proliferação de Células , Feminino , Humanos , Imuno-Histoquímica , Proteínas Mitocondriais/genética , Primeiro Trimestre da Gravidez/metabolismo , Segundo Trimestre da Gravidez/metabolismo , Terceiro Trimestre da Gravidez/metabolismo , Proteínas Tirosina Fosfatases/genéticaRESUMO
Peptidoglycan (PGN) recognition proteins (PGLYRPs) are a highly conserved group of host defense proteins in insects and mammals that sense bacterial cell wall PGN and act bactericidally or cleave PGN by amidase function. Streptococcus (S.) pneumoniae is one of the top five killers worldwide and causes, e.g., pneumonia, endocarditis, meningitis and sepsis. S. pneumoniae accounts for approximately 1.5-2 million deaths every year. The risk of antibiotic resistance and a general poor prognosis in young children and elderly people have led to the need for new treatment approaches. To the best of our knowledge, there is no report on the relevance of PGLYRP2 in lung infections. Therefore, we infected mice deficient for PGLYRP2 transnasally with S. pneumoniae and examined the innate immune response in comparison to WT animals. As expected, PGLYRP2-KO animals had to be sacrificed earlier than their WT counterparts, and this was due to higher bacteremia. The higher bacterial load in the PGLYRP2-KO mice was accomplished with lower amounts of proinflammatory cytokines in the lungs. This led to an abolished recruitment of neutrophils into the lungs, the spread of bacteria and the subsequent aggravated course of the disease and early mortality of the PGLYRP2-KO mice. These data suggest a substantial role of PGLYRP2 in the early defense against S. pneumoniae infection, and PGLYRP2 might also affect other infections in the lungs.
RESUMO
Plasmacytoid dendritic cells (pDC) are critical to antiviral defense because of their high production of type I IFNs; less is known regarding their functions in bacterial infection. Moreover, pDC are involved in immunomodulation. A stable pool of regulatory T cells (Treg) is crucial for maintaining immune homeostasis. However, interactions between pDC and Treg regarding the regulation of Treg homeostasis are understudied. By using BDCA2-DTR mice as a systemic pDC depletion model, we identified increased steady-state numbers of FoxP3+ T cells with an effector Treg-like phenotype in lungs, liver, and spleen tissues. During sublethal, pulmonary Klebsiella pneumoniae infection, pDC deficiency also elevated respiratory FoxP3+ T cell numbers. Additionally, the improvement in acute pneumonia survival until day 5 post infection was accompanied by impaired proinflammatory cytokine production. In contrast, pDC-depleted mice exhibited a delayed clinical recovery during the post-acute phase. Therefore, we assume that pDC act as immunomodulators supporting the rapid onset of immune response in a proinflammatory manner and regulate inflammation or tissue regeneration in the post-acute phase. In summary, pDC assist in FoxP3+ T cell homeostasis and the regulation of Klebsiella-pneumonia progression.
Assuntos
Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Linfócitos T/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Klebsiella pneumoniae/fisiologia , Lectinas Tipo C/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/patologiaRESUMO
Pulmonary arterial hypertension (PAH) is a devastating disease with poor prognosis and limited therapeutic options. We screened for pathways that may be responsible for the abnormal phenotype of pulmonary arterial smooth muscle cells (PASMCs), a major contributor of PAH pathobiology, and identified cyclin-dependent kinases (CDKs) as overactivated kinases in specimens derived from patients with idiopathic PAH. This increased CDK activity is confirmed at the level of mRNA and protein expression in human and experimental PAH, respectively. Specific CDK inhibition by dinaciclib and palbociclib decreases PASMC proliferation via cell cycle arrest and interference with the downstream CDK-Rb (retinoblastoma protein)-E2F signaling pathway. In two experimental models of PAH (i.e., monocrotaline and Su5416/hypoxia treated rats) palbociclib reverses the elevated right ventricular systolic pressure, reduces right heart hypertrophy, restores the cardiac index, and reduces pulmonary vascular remodeling. These results demonstrate that inhibition of CDKs by palbociclib may be a therapeutic strategy in PAH.