Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Chem Lab Med ; 62(7): 1376-1382, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38206121

RESUMO

OBJECTIVES: Data in literature indicate that in patients suffering a minor head injury (MHI), biomarkers serum levels could be effective to predict the absence of intracranial injury (ICI) on head CT scan. Use of these biomarkers in case of patients taking oral anticoagulants who experience MHI is very limited. We investigated biomarkers as predictors of ICI in anticoagulated patients managed in an ED. METHODS: We conducted a single-cohort, prospective, observational study in an ED. Our structured clinical pathway included a first head CT scan, 24 h observation and a second CT scan. The outcome was delayed ICI (dICI), defined as ICI on the second CT scan after a first negative CT scan. We assessed the sensitivity (SE), specificity (SP), negative predictive value (NNV) and positive predictive value (PPV) of the biomarkers S100B, NSE, GFAP, UCH-L1 and Alinity TBI in order to identify dICI. RESULTS: Our study population was of 234 patients with a negative first CT scan who underwent a second CT scan. The rate of dICI was 4.7 %. The NPV for the detection of dICI were respectively (IC 95 %): S100B 92.7 % (86.0-96.8 %,); ubiquitin C-terminal hydrolase-L1 (UCH-L1) 91.8 % (83.8-96.6 %); glial fibrillary protein (GFP) 100 % (83.2-100 %); TBI 100 % (66.4-100 %). The AUC for the detection of dICI was 0.407 for S100B, 0.563 for neuron-specific enolase (NSE), 0.510 for UCH-L1 and 0.720 for glial fibrillary acidic protein (GFAP), respectively. CONCLUSIONS: The NPV of the analyzed biomarkers were high and they potentially could limit the number of head CT scan for detecting dICI in anticoagulated patients suffering MHI. GFAP and Alinity TBI seem to be effective to rule out a dCI, but future trials are needed.


Assuntos
Anticoagulantes , Biomarcadores , Traumatismos Craniocerebrais , Proteína Glial Fibrilar Ácida , Fosfopiruvato Hidratase , Subunidade beta da Proteína Ligante de Cálcio S100 , Tomografia Computadorizada por Raios X , Ubiquitina Tiolesterase , Humanos , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Estudos Prospectivos , Ubiquitina Tiolesterase/sangue , Biomarcadores/sangue , Proteína Glial Fibrilar Ácida/sangue , Masculino , Feminino , Fosfopiruvato Hidratase/sangue , Idoso , Traumatismos Craniocerebrais/sangue , Traumatismos Craniocerebrais/diagnóstico , Pessoa de Meia-Idade , Anticoagulantes/uso terapêutico , Idoso de 80 Anos ou mais
2.
Cell Mol Life Sci ; 80(3): 75, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847916

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous transcriptional regulator. The study of this protein has been mainly focused on the central nervous system because alterations of its expression are associated with neurological disorders such as Rett syndrome. However, young patients with Rett syndrome also suffer from osteoporosis, suggesting a role of MeCP2 in the differentiation of human bone marrow mesenchymal stromal cells (hBMSCs), the precursors of osteoblasts and adipocytes. Here, we report an in vitro downregulation of MeCP2 in hBMSCs undergoing adipogenic differentiation (AD) and in adipocytes of human and rat bone marrow tissue samples. This modulation does not depend on MeCP2 DNA methylation nor on mRNA levels but on differentially expressed miRNAs during AD. MiRNA profiling revealed that miR-422a and miR-483-5p are upregulated in hBMSC-derived adipocytes compared to their precursors. MiR-483-5p, but not miR-422a, is also up-regulated in hBMSC-derived osteoblasts, suggesting a specific role of the latter in the adipogenic process. Experimental modulation of intracellular levels of miR-422a and miR-483-5p affected MeCP2 expression through direct interaction with its 3' UTR elements, and the adipogenic process. Accordingly, the knockdown of MeCP2 in hBMSCs through MeCP2-targeting shRNA lentiviral vectors increased the levels of adipogenesis-related genes. Finally, since adipocytes released a higher amount of miR-422a in culture medium compared to hBMSCs we analyzed the levels of circulating miR-422a in patients with osteoporosis-a condition characterized by increased marrow adiposity-demonstrating that its levels are negatively correlated with T- and Z-scores. Overall, our findings suggest that miR-422a has a role in hBMSC adipogenesis by downregulating MeCP2 and its circulating levels are associated with bone mass loss in primary osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Células-Tronco Mesenquimais , Proteína 2 de Ligação a Metil-CpG , MicroRNAs , Síndrome de Rett , Animais , Humanos , Ratos , Regiões 3' não Traduzidas , Adipogenia/genética , Regulação para Baixo/genética , Proteína 2 de Ligação a Metil-CpG/genética , MicroRNAs/genética
3.
J Cell Physiol ; 233(12): 9077-9086, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29932216

RESUMO

Adipose tissue is a dynamic endocrine organ playing a pivotal role in metabolism modulation. Adipocytes differentiation requires a highly orchestrated series of changes of gene expression in precursor cells. At the same time, white mature adipocytes are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells via the liposecretion process, returning back to a non-committed status of the cells. In particular, adipose tissue microenvironment along with external signaling molecules such as adipokines, cytokines and growth factors can regulate adipocytes physiology through complex molecular networks. MicroRNAs (miRNAs), a type of non-coding RNA, acting as fine regulators of biological processes and their expression is sensible to the environment and cellular status changes. MiRNAs are thought to play a pivotal role in regulating the physiology of adipose tissue as well as in the development of obesity and associated metabolic disturbances, although the underlying mechanisms have not been identified so far. Elucidating the molecular mechanisms orchestrating adipose tissue biology is required to better characterize obesity and its associated diseases. In this respect, the review aims to analyze the microRNAs potentially involved in adipogenesis highlighting their role in the process of liposecretion, adipocyte proliferation, and adipokines secretion. The role of microRNAs in the development of obesity and obesity-associated disorders is also discussed.


Assuntos
Adipócitos/citologia , Tecido Adiposo/crescimento & desenvolvimento , Diferenciação Celular/genética , MicroRNAs/genética , Adipócitos/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Tecido Adiposo/metabolismo , Animais , Proliferação de Células/genética , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/genética
4.
Immun Ageing ; 10(1): 11, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23506673

RESUMO

The age-related changes of immune system functions are complex phenomena incompletely understood. The acquired immune system shows a functional decline in ability to respond to new pathogens during aging, whereas serum levels of inflammatory cytokines are increased with age. The source of this age-related systemic chronic inflammation, named inflammaging, was mainly attributed to the progressive activation of immune cells over time. However, recent studies have shown that the process of cellular senescence can be an important additional contributor to chronic inflammation, since senescent cells acquire a phenotype named "senescence-associated secretory phenotype" (SASP), characterized by the enhanced secretion of many inflammation modulators. Pathogen-associated molecular pattern receptors, in particular Toll-like receptors (TLRs), are key molecules in the response of innate immunity cells to pathological stimuli. An intriguing and innovative hypothesis is that the dysfunction of TLRs signaling and the acquisition of SASP can be two interconnected phenomena. The TLR family, including receptors and co-effector molecules, do not show a consistent age-dependent change across model systems. However, there is evidence for impaired downstream signaling events, including inhibition of positive and activation of negative modulators of TLR signaling. MicroRNAs (miRNAs) are a newly discovered class of gene regulators acting as post-transcriptional repressors of a number of genes. The miRNA property to finely-tune gene expression makes them right for immune system regulation, which requires precise control for proper activity. We reviewed evidences suggesting that miRNAs can modulate TLR signaling mainly by three different mechanisms: 1) miRNAs can directly target components of the TLR signaling system, 2) miRNA expression can be directly regulated by TLRs pathway activation and 3) miRNAs can directly activate the RNA-sensing TLRs, like TLR-8, in humans. We also reviewed how TLR signaling is modulated by miRNAs during aging, and how an impaired miRNAs/TLR signaling interaction in immune system cells and related cells, i.e. endothelial cells and adipocytes, can contribute to inflammaging observed in normal aging. Interestingly, this impairment appears accelerated in presence of the majors age-related diseases, such as cardiovascular diseases, diabetes, neurodegenerative diseases and cancers.

5.
Mech Ageing Dev ; 216: 111876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802485

RESUMO

Elevation of cardiac damage biomarkers is associated with adverse clinical outcomes and increased mortality in COVID-19 patients. This study assessed the association of admission serum levels of sST2 and H-FABP with in-hospital mortality in 191 geriatric patients (median age 86 yrs., IQR 82-91 yrs.) with COVID-19 and available measures of hs-cTnT and NT-proBNP at admission. Cox proportional hazards models were utilized to predict in-hospital mortality, considering clinical/biochemical confounders as covariates. A composite cardiac score was calculated to improve predictive accuracy. Patients deceased during their hospital stay (26%) exhibited higher levels of all biomarkers, which demonstrated good discrimination for in-hospital mortality. Addition of sST2 and H-FABP significantly improved the discriminatory power of hs-cTnT and NT-proBNP. The composite cardiac score (AUC=0.866) further enhanced the predictive accuracy. Crude and adjusted Cox regressions models revealed that both sST2 and H-FABP were independently associated with in-hospital mortality (HR for sST2 ≥129 ng/mL, 4.32 [1.48-12.59]; HR for H-FABP ≥18 ng/mL, 7.70 [2.12-28.01]). The composite cardiac score also independently correlated with in-hospital mortality (HR for 1-unit increase, 1.47 [1.14-1.90]). In older patients with COVID-19, sST2 and H-FABP demonstrated prognostic value, improving the predictive accuracy of the routinely assessed biomarkers hs-cTnT and NT-proBNP.


Assuntos
COVID-19 , Idoso , Idoso de 80 Anos ou mais , Humanos , Biomarcadores , Proteína 3 Ligante de Ácido Graxo , Mortalidade Hospitalar , Fragmentos de Peptídeos , Prognóstico
6.
J Cell Biol ; 210(6): 1003-12, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26347138

RESUMO

Brain-derived neurotrophic factor (BDNF) is critical for mammalian development and plasticity of neuronal circuitries affecting memory, mood, anxiety, pain sensitivity, and energy homeostasis. Here we report a novel unexpected role of BDNF in regulating the cardiac contraction force independent of the nervous system innervation. This function is mediated by the truncated TrkB.T1 receptor expressed in cardiomyocytes. Loss of TrkB.T1 in these cells impairs calcium signaling and causes cardiomyopathy. TrkB.T1 is activated by BDNF produced by cardiomyocytes, suggesting an autocrine/paracrine loop. These findings unveil a novel signaling mechanism in the heart that is activated by BDNF and provide evidence for a global role of this neurotrophin in the homeostasis of the organism by signaling through different TrkB receptor isoforms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cardiomiopatias/enzimologia , Glicoproteínas de Membrana/metabolismo , Força Muscular , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Proteínas Tirosina Quinases/metabolismo , Animais , Comunicação Autócrina , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Sinalização do Cálcio , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Ativação Enzimática , Genótipo , Preparação de Coração Isolado , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Knockout , Camundongos Transgênicos , Força Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Comunicação Parácrina , Fenótipo , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Fatores de Tempo
7.
Aging Cell ; 13(5): 850-61, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25040542

RESUMO

MiRNAs are fine-tuning modifiers of skeletal muscle regulation, but knowledge of their hormonal control is lacking. We used a co-twin case-control study design, that is, monozygotic postmenopausal twin pairs discordant for estrogen-based hormone replacement therapy (HRT) to explore estrogen-dependent skeletal muscle regulation via miRNAs. MiRNA profiles were determined from vastus lateralis muscle of nine healthy 54-62-years-old monozygotic female twin pairs discordant for HRT (median 7 years). MCF-7 cells, human myoblast cultures and mouse muscle experiments were used to confirm estrogen's causal role on the expression of specific miRNAs, their target mRNAs and proteins and finally the activation of related signaling pathway. Of the 230 miRNAs expressed at detectable levels in muscle samples, qPCR confirmed significantly lower miR-182, miR-223 and miR-142-3p expressions in HRT using than in their nonusing co-twins. Insulin/IGF-1 signaling emerged one common pathway targeted by these miRNAs. IGF-1R and FOXO3A mRNA and protein were more abundantly expressed in muscle samples of HRT users than nonusers. In vitro assays confirmed effective targeting of miR-182 and miR-223 on IGF-1R and FOXO3A mRNA as well as a dose-dependent miR-182 and miR-223 down-regulations concomitantly with up-regulation of FOXO3A and IGF-1R expression. Novel finding is the postmenopausal HRT-reduced miRs-182, miR-223 and miR-142-3p expression in female skeletal muscle. The observed miRNA-mediated enhancement of the target genes' IGF-1R and FOXO3A expression as well as the activation of insulin/IGF-1 pathway signaling via phosphorylation of AKT and mTOR is an important mechanism for positive estrogen impact on skeletal muscle of postmenopausal women.


Assuntos
Terapia de Reposição Hormonal/métodos , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/biossíntese , Músculo Esquelético/metabolismo , Pós-Menopausa/metabolismo , Gêmeos Monozigóticos , Fatores Etários , Idoso , Animais , Estudos de Casos e Controles , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos , MicroRNAs/antagonistas & inibidores , Pessoa de Meia-Idade , Pós-Menopausa/efeitos dos fármacos , Pós-Menopausa/genética , Transdução de Sinais
8.
Age (Dordr) ; 35(4): 1157-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22692818

RESUMO

In order to identify new markers of vascular cell senescence with potential in vivo implications, primary cultured endothelial cells, including human umbilical vein endothelial cells (HUVECs), human aortic endothelial cells (HAECs), human coronary artery endothelial cells (HCAECs) and ex vivo circulating angiogenic cells (CACs), were analysed for microRNA (miR) expression. Among the 367 profiled miRs in HUVECs, miR-146a, miR-9, miR-204 and miR-367 showed the highest up-regulation in senescent cells. Their predicted target genes belong to nine common pathways, including Toll-like receptor signalling (TLR) that plays a pivotal role in inflammatory response, a key feature of senescence (inflammaging). MiR-146a was the most up-regulated miR in the validation analysis (>10-fold). Mimic and antagomir transfection confirmed TLR's IL-1 receptor-associated kinase (IRAK1) protein modulation in both young and senescent cells. Significant correlations were observed among miR-146a expression and ß-galactosidase expression, telomere length and telomerase activity. MiR-146a hyper-expression was also validated in senescent HAECs (>4-fold) and HCAECs (>30-fold). We recently showed that CACs from patients with chronic heart failure (CHF) presented a distinguishing feature of senescence. Therefore, we also included miR-146a expression determination in CACs from 37 CHF patients and 35 healthy control subjects (CTR) for this study. Interestingly, a 1,000-fold increased expression of miR-146a was observed in CACs of CHF patients compared to CTR, along with decreased expression of IRAK1 protein. Moreover, significant correlations among miR-146a expression, telomere length and telomerase activity were observed. Overall, our findings indicate that miR-146a is a marker of a senescence-associated pro-inflammatory status in vascular remodelling cells.


Assuntos
Senescência Celular/genética , Claudina-1/genética , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Inflamação/genética , MicroRNAs/genética , Biomarcadores/metabolismo , Células Cultivadas , Claudina-1/metabolismo , Endotélio Vascular/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , MicroRNAs/biossíntese , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Telômero/genética , Telômero/metabolismo , Análise Serial de Tecidos
9.
Free Radic Biol Med ; 63: 410-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23727324

RESUMO

Clinical evidence demonstrates that ubiquinol-10, the reduced active form of coenzyme Q10 (CoQ10H2), improves endothelial function through its antioxidant and probably its anti-inflammatory properties. We previously reported that a biomarker combination including miR-146a, its target protein IL-1 receptor-associated kinase (IRAK-1), and released interleukin (IL)-6, here collectively designated as MIRAKIL, indicates senescence-associated secretory phenotype (SASP) acquisition by primary human umbilical vein endothelial cells (HUVECs). We explore the ability of short- and long-term CoQ10H2 supplementation to affect MIRAKIL in HUVECs, used as a model of vascular aging, during replicative senescence in the absence/presence of lipopolysaccharide (LPS), a proinflammatory stimulus. Senescent HUVECs had the same ability as young cells to internalize CoQ10 and exhibit an improved oxidative status. LPS-induced NF-κB activation diminished after CoQ10H2 pretreatment in both young and senescent cells. However, short-term CoQ10H2 supplementation attenuated LPS-induced MIRAKIL changes in young cells; in senescent cells CoQ10H2 supplementation significantly attenuated LPS-induced miR-146a and IRAK-1 modulation but failed to curb IL-6 release. Similar results were obtained with long-term CoQ10H2 incubation. These findings provide new insights into the molecular mechanisms by which CoQ10H2 stems endothelial cell inflammatory responses and delays SASP acquisition. These phenomena may play a role in preventing the endothelial dysfunction associated with major age-related diseases.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Inflamação/metabolismo , MicroRNAs/genética , Ubiquinona/análogos & derivados , Envelhecimento/metabolismo , Antioxidantes/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Ubiquinona/administração & dosagem , Ubiquinona/genética , Ubiquinona/metabolismo
10.
Cell Transplant ; 20(5): 643-54, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21054927

RESUMO

Mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering. Increasing evidence suggests that MSCs isolated from fetal tissues are more plastic and grow faster than adult MSCs. In this study, we characterized human mesenchymal progenitor cells from chorionic villi (CV) and amniotic fluid (AF) isolated during the first and second trimesters, respectively, and compared them with adult bone marrow-derived MSCs (BM). We evaluated 10 CV, 10 AF, and 6 BM samples expanded until the MSCs reached senescence. We used discarded cells from prenatal analyses for all the experiments. To evaluate the replicative stability of these cells, we studied the telomerase activity, hTERT gene transcription, and telomere length in these cells. Spontaneous chromosomal alterations were excluded by cytogenetic analysis. We studied the expression of c-myc and p53, tumor-associated genes, at different passage in culture and the capacity of these cells to grow in an anchorage-independent manner by using soft agar assay. We isolated homogeneous populations of spindle-shaped CV, AF, and BM cells expressing mesenchymal immunophenotypic markers throughout the period of expansion. CV cells achieved 14 ± 0.9 logs of expansion in 118 days and AF cells achieved 21 ± 0.9 logs in 118 days, while BM cells achieved 11 × 0.4 logs in 84 days. Despite their high proliferation capacity, fetal MSCs showed no telomerase activity, no hTERT and c-myc transcriptions, and maintained long, stable telomeres. A constant expression level of p53 and a normal karyotype were preserved throughout long-term expansion, suggesting the safety of fetal MSCs. In conclusion, our results indicate that fetal MSCs could be an alternative, more accessible resource for cell therapy and regenerative medicine.


Assuntos
Líquido Amniótico/citologia , Vilosidades Coriônicas , Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Cariotipagem , Células-Tronco Mesenquimais/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-myc/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/fisiologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA