Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 49(13): 7492-7506, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34197599

RESUMO

Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B.


Assuntos
Citidina Desaminase/metabolismo , Replicação do DNA , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias/enzimologia , Desaminases APOBEC/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Desaminação , Humanos , Hidroxiureia/toxicidade , Estresse Fisiológico/genética
2.
J Theor Biol ; 545: 111104, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35337794

RESUMO

New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments to better understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population into five compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle in the G2 phase. While model predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter estimates and validate model predictions.


Assuntos
Hipóxia , Oxigênio , Hipóxia Celular/fisiologia , DNA/metabolismo , Humanos , Modelos Teóricos , Oxigênio/metabolismo
4.
Mol Cell Proteomics ; 15(3): 1151-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704149

RESUMO

Posttranslational modifications of proteins play an important role in biology. For example, phosphorylation is a key component in signal transduction in all three domains of life, and histones can be modified in such a variety of ways that a histone code for gene regulation has been proposed. Shotgun proteomics is commonly used to identify posttranslational modifications as well as chemical modifications from sample processing. However, it favors the detection of abundant peptides over the repertoire presented, and the data analysis usually requires advance specification of modification masses and target amino acids, their number constrained by available computational resources. Recent advances in data independent acquisition mass spectrometry technologies such as SWATH-MS enable a deeper recording of the peptide contents of samples, including peptides with modifications. Here, we present a novel approach that applies the power of SWATH-MS analysis to the automated pursuit of modified peptides. With the new SWATHProphet(PTM) functionality added to the open source SWATHProphet software, precursor ions consistent with a modification are identified along with the mass and localization of the modification in the peptide sequence in a sensitive and unrestricted manner without the need to anticipate the modifications in advance. Using this method, we demonstrate the detection of a wide assortment of modified peptides, many unanticipated, in samples containing unpurified synthetic peptides and human urine, as well as in phospho-enriched human tissue culture cell samples.


Assuntos
Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Biologia Computacional/métodos , Histonas/química , Humanos , Peptídeos/urina , Fosforilação , Proteínas/metabolismo , Software
5.
Mol Cell Proteomics ; 14(5): 1411-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25713123

RESUMO

Proteomics by mass spectrometry technology is widely used for identifying and quantifying peptides and proteins. The breadth and sensitivity of peptide detection have been advanced by the advent of data-independent acquisition mass spectrometry. Analysis of such data, however, is challenging due to the complexity of fragment ion spectra that have contributions from multiple co-eluting precursor ions. We present SWATHProphet software that identifies and quantifies peptide fragment ion traces in data-independent acquisition data, provides accurate probabilities to ensure results are correct, and automatically detects and removes contributions to quantitation originating from interfering precursor ions. Integration in the widely used open source Trans-Proteomic Pipeline facilitates subsequent analyses such as combining results of multiple data sets together for improved discrimination using iProphet and inferring sample proteins using ProteinProphet. This novel development should greatly help make data-independent acquisition mass spectrometry accessible to large numbers of users.


Assuntos
Peptídeos/análise , Proteínas/análise , Proteinúria/urina , Software , Espectrometria de Massas em Tandem/estatística & dados numéricos , Humanos , Biblioteca de Peptídeos , Proteínas/química , Proteólise , Proteômica/métodos , Reprodutibilidade dos Testes , Tripsina/química
6.
Phys Rev Lett ; 114(1): 010501, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25615454

RESUMO

We present measurements of coherence and successive decay dynamics of higher energy levels of a superconducting transmon qubit. By applying consecutive π pulses for each sequential transition frequency, we excite the qubit from the ground state up to its fourth excited level and characterize the decay and coherence of each state. We find the decay to proceed mainly sequentially, with relaxation times in excess of 20 µs for all transitions. We also provide a direct measurement of the charge dispersion of these levels by analyzing beating patterns in Ramsey fringes. The results demonstrate the feasibility of using higher levels in transmon qubits for encoding quantum information.

7.
Org Biomol Chem ; 13(1): 199-206, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25360848

RESUMO

Maculalactone A (1) constitutes a promising antifouling agent, inhibiting the formation of biofilms in marine and freshwater systems. In this study, we developed a new route, based on a late-stage formation of the butenolide core, leading to the total synthesis of maculalactone A (three steps, overall yield of 45%) and delivering material on a gram scale. In addition, analogues of the title compound were assayed concerning their biological activity, utilizing Artemia franciscana and Thamnocephalus platyurus. The most active analogue was functionalized with a rhodamine B fluorophore and was utilized in an in vivo staining experiment in Artemia salina. Two different tissues were found to accumulate this maculalactone A derivative.


Assuntos
Benzofuranos/química , Benzofuranos/síntese química , Meio Ambiente , Lactonas/química , Lactonas/síntese química , Animais , Artemia/metabolismo , Benzofuranos/metabolismo , Técnicas de Química Sintética , Lactonas/metabolismo , Microscopia , Relação Estrutura-Atividade
8.
J Nanosci Nanotechnol ; 14(3): 2648-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24745278

RESUMO

FePt-Fe3O4 core-shell nanoparticles functionalized with 3,4-dihydroxyphenylacetic acid (DOPAC) and dimercaptosuccinic acid (DMSA) ligands were synthesized and characterized. We found that the DOPAC ligand enhances the magnetic properties of the FePt-Fe3O4 particles, in comparison with the DMSA ligand, which induces the oxidation of the shell layer that causes a significant reduction of the saturation magnetization. The synthesized magnetic nanoparticles were evaluated for applications in magnetic hyperthermia and magnetic resonance imaging contrast enhancement.


Assuntos
Compostos Férricos/química , Ferro/química , Nanopartículas Metálicas/química , Platina/química , Ácido 3,4-Di-Hidroxifenilacético/química , Materiais Biocompatíveis , Meios de Contraste/química , Ligantes , Imageamento por Ressonância Magnética , Magnetismo , Microscopia Eletrônica de Transmissão , Oxigênio/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Succímero/química , Temperatura , Água/química
9.
Mol Syst Biol ; 8: 571, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22373819

RESUMO

Protein post-translational modifications (PTMs) represent important regulatory states that when combined have been hypothesized to act as molecular codes and to generate a functional diversity beyond genome and transcriptome. We systematically investigate the interplay of protein phosphorylation with other post-transcriptional regulatory mechanisms in the genome-reduced bacterium Mycoplasma pneumoniae. Systematic perturbations by deletion of its only two protein kinases and its unique protein phosphatase identified not only the protein-specific effect on the phosphorylation network, but also a modulation of proteome abundance and lysine acetylation patterns, mostly in the absence of transcriptional changes. Reciprocally, deletion of the two putative N-acetyltransferases affects protein phosphorylation, confirming cross-talk between the two PTMs. The measured M. pneumoniae phosphoproteome and lysine acetylome revealed that both PTMs are very common, that (as in Eukaryotes) they often co-occur within the same protein and that they are frequently observed at interaction interfaces and in multifunctional proteins. The results imply previously unreported hidden layers of post-transcriptional regulation intertwining phosphorylation with lysine acetylation and other mechanisms that define the functional state of a cell.


Assuntos
Acetilesterase/metabolismo , Tamanho do Genoma/genética , Lisina/metabolismo , Redes e Vias Metabólicas/genética , Pneumonia por Mycoplasma/genética , Proteínas Quinases/metabolismo , Acetilação , Domínio Catalítico/genética , Evolução Molecular , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Genoma Bacteriano/genética , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Organismos Geneticamente Modificados , Fosforilação/fisiologia , Pneumonia por Mycoplasma/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteoma/genética , Proteoma/metabolismo
10.
Nat Mater ; 9(2): 165-71, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19946279

RESUMO

Nanomagnetic materials offer exciting avenues for probing cell mechanics and activating mechanosensitive ion channels, as well as for advancing cancer therapies. Most experimental works so far have used superparamagnetic materials. This report describes a first approach based on interfacing cells with lithographically defined microdiscs that possess a spin-vortex ground state. When an alternating magnetic field is applied the microdisc vortices shift, creating an oscillation, which transmits a mechanical force to the cell. Because reduced sensitivity of cancer cells toward apoptosis leads to inappropriate cell survival and malignant progression, selective induction of apoptosis is of great importance for the anticancer therapeutic strategies. We show that the spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane, and initiation of programmed cell death. A low-frequency field of a few tens of hertz applied for only ten minutes was sufficient to achieve approximately 90% cancer-cell destruction in vitro.


Assuntos
Magnetismo , Neoplasias/patologia , Neoplasias/terapia , Anticorpos Monoclonais/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Cálcio/metabolismo , Morte Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Fenômenos Mecânicos , Imagem Molecular , Neoplasias/metabolismo
11.
Cancers (Basel) ; 13(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374581

RESUMO

Regions of hypoxia occur in most if not all solid cancers. Although the presence of tumor hypoxia is a common occurrence, the levels of hypoxia and proportion of the tumor that are hypoxic vary significantly. Importantly, even within tumors, oxygen levels fluctuate due to changes in red blood cell flux, vascular remodeling and thermoregulation. Together, this leads to cyclic or intermittent hypoxia. Tumor hypoxia predicts for poor patient outcome, in part due to increased resistance to all standard therapies. However, it is less clear how cyclic hypoxia impacts therapy response. Here, we discuss the causes of cyclic hypoxia and, importantly, which imaging modalities are best suited to detecting cyclic vs. chronic hypoxia. In addition, we provide a comparison of the biological response to chronic and cyclic hypoxia, including how the levels of reactive oxygen species and HIF-1 are likely impacted. Together, we highlight the importance of remembering that tumor hypoxia is not a static condition and that the fluctuations in oxygen levels have significant biological consequences.

12.
Nat Commun ; 11(1): 5251, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067471

RESUMO

Data-independent acquisition (DIA) mass spectrometry, also known as Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH), is a popular label-free proteomics strategy to comprehensively quantify peptides/proteins utilizing mass spectral libraries to decipher inherently multiplexed spectra collected linearly across a mass range. Although there are many spectral libraries produced worldwide, the quality control of these libraries is lacking. We present the DIALib-QC (DIA library quality control) software tool for the systematic evaluation of a library's characteristics, completeness and correctness across 62 parameters of compliance, and further provide the option to improve its quality. We demonstrate its utility in assessing and repairing spectral libraries for correctness, accuracy and sensitivity.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Software , Humanos , Espectrometria de Massas/normas , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/genética , Proteínas/química , Proteínas/genética , Proteômica/normas
13.
Sci Data ; 7(1): 389, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184295

RESUMO

Data-Independent Acquisition (DIA) is a method to improve consistent identification and precise quantitation of peptides and proteins by mass spectrometry (MS). The targeted data analysis strategy in DIA relies on spectral assay libraries that are generally derived from a priori measurements of peptides for each species. Although Escherichia coli (E. coli) is among the best studied model organisms, so far there is no spectral assay library for the bacterium publicly available. Here, we generated a spectral assay library for 4,014 of the 4,389 annotated E. coli proteins using one- and two-dimensional fractionated samples, and ion mobility separation enabling deep proteome coverage. We demonstrate the utility of this high-quality library with robustness in quantitation of the E. coli proteome and with rapid-chromatography to enhance throughput by targeted DIA-MS. The spectral assay library supports the detection and quantification of 91.5% of all E. coli proteins at high-confidence with 56,182 proteotypic peptides, making it a valuable resource for the scientific community. Data and spectral libraries are available via ProteomeXchange (PXD020761, PXD020785) and SWATHAtlas (SAL00222-28).


Assuntos
Proteínas de Escherichia coli/análise , Escherichia coli/metabolismo , Espectrometria de Massas , Proteoma/análise , Biblioteca de Peptídeos , Peptídeos/análise
14.
Biomedicines ; 8(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825120

RESUMO

The androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and metastasis. Thus, blocking AR activity and its downstream signaling constitutes a major strategy for PCa treatment. Here, we report on the potent anti-PCa activity of a small-molecule imidazoacridinone, C-1311. In AR-positive PCa cells, C-1311 was found to inhibit the transcriptional activity of AR, uncovering a novel mechanism that may be relevant for its anticancer effect. Mechanistically, C-1311 decreased the AR binding to the prostate-specific antigen (PSA) promoter, reduced the PSA protein level, and, as shown by transcriptome sequencing, downregulated numerous AR target genes. Importantly, AR-negative PCa cells were also sensitive to C-1311, suggesting a promising efficacy in the androgen-independent PCa sub-type. Irrespective of AR status, C-1311 induced DNA damage, arrested cell cycle progression, and induced apoptosis. RNA sequencing indicated significant differences in the transcriptional response to C-1311 between the PCa cells. Gene ontology analysis showed that in AR-dependent PCa cells, C-1311 mainly affected the DNA damage response pathways. In contrast, in AR-independent PCa cells, C-1311 targeted the cellular metabolism and inhibited the genes regulating glycolysis and gluconeogenesis. Together, these results indicate that C-1311 warrants further development for the treatment of PCa.

15.
Science ; 365(6460): 1454-1457, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31604274

RESUMO

A high-conductivity two-dimensional (2D) hole gas, analogous to the ubiquitous 2D electron gas, is desirable in nitride semiconductors for wide-bandgap p-channel transistors. We report the observation of a polarization-induced high-density 2D hole gas in epitaxially grown gallium nitride on aluminium nitride and show that such hole gases can form without acceptor dopants. The measured high 2D hole gas densities of about 5 × 1013 per square centimeters remain unchanged down to cryogenic temperatures and allow some of the lowest p-type sheet resistances among all wide-bandgap semiconductors. The observed results provide a probe for studying the valence band structure and transport properties of wide-bandgap nitride interfaces.

16.
FEBS Lett ; 582(8): 1220-4, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18282471

RESUMO

Cellular functions are almost always the result of the coordinated action of several proteins, interacting in protein complexes, pathways or networks. Progress made in devising suitable tools for analysis of protein-protein interactions, have recently made it possible to chart interaction networks on a large-scale. The aim of this review is to provide a short overview of the most promising contributions of interaction networks to human biology, structural biology and human genetics.


Assuntos
Proteínas/metabolismo , Biologia de Sistemas , Ligação Proteica , Conformação Proteica , Proteínas/química
17.
DNA Res ; 24(2): 143-157, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28065881

RESUMO

Differential next-generation-omics approaches aid in the visualization of biological processes and pave the way for divulging important events and/or interactions leading to a functional output at cellular or systems level. To this end, we undertook an integrated Nextgen transcriptomics and proteomics approach to divulge differential gene expression of infant and pubertal rat Sertoli cells (Sc).Unlike, pubertal Sc, infant Sc are immature and fail to support spermatogenesis. We found exclusive association of 14 and 19 transcription factor binding sites to infantile and pubertal states of Sc, respectively, using differential transcriptomics-guided genome-wide computational analysis of relevant promoters employing 220 Positional Weight Matrices from the TRANSFAC database. Proteomic SWATH-MS analysis provided extensive quantification of nuclear and cytoplasmic protein fractions revealing 1,670 proteins differentially located between the nucleus and cytoplasm of infant Sc and 890 proteins differentially located within those of pubertal Sc. Based on our multi-omics approach, the transcription factor YY1 was identified as one of the lead candidates regulating differentiation of Sc.YY1 was found to have abundant binding sites on promoters of genes upregulated during puberty. To determine its significance, we generated transgenic rats with Sc specific knockdown of YY1 that led to compromised spermatogenesis.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas , Células de Sertoli/fisiologia , Testículo/fisiologia , Fator de Transcrição YY1/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Proteômica , Ratos , Ratos Wistar , Células de Sertoli/metabolismo , Espermatogênese , Testículo/metabolismo , Fator de Transcrição YY1/fisiologia
18.
Nat Commun ; 8(1): 291, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827567

RESUMO

Quantitative proteomics employing mass spectrometry is an indispensable tool in life science research. Targeted proteomics has emerged as a powerful approach for reproducible quantification but is limited in the number of proteins quantified. SWATH-mass spectrometry consists of data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, and selectivity) of targeted proteomics at large scale. While previous SWATH-mass spectrometry studies have shown high intra-lab reproducibility, this has not been evaluated between labs. In this multi-laboratory evaluation study including 11 sites worldwide, we demonstrate that using SWATH-mass spectrometry data acquisition we can consistently detect and reproducibly quantify >4000 proteins from HEK293 cells. Using synthetic peptide dilution series, we show that the sensitivity, dynamic range and reproducibility established with SWATH-mass spectrometry are uniformly achieved. This study demonstrates that the acquisition of reproducible quantitative proteomics data by multiple labs is achievable, and broadly serves to increase confidence in SWATH-mass spectrometry data acquisition as a reproducible method for large-scale protein quantification.SWATH-mass spectrometry consists of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics on the scale of thousands of proteins. Here, using data generated by eleven groups worldwide, the authors show that SWATH-MS is capable of generating highly reproducible data across different laboratories.


Assuntos
Ensaio de Proficiência Laboratorial/métodos , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteômica/métodos , Células HEK293 , Humanos , Laboratórios/normas , Laboratórios/estatística & dados numéricos , Reprodutibilidade dos Testes
19.
Sci Rep ; 7(1): 9718, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887440

RESUMO

Data-independent acquisition mass spectrometry promises higher performance in terms of quantification and reproducibility compared to data-dependent acquisition mass spectrometry methods. To enable high-accuracy quantification of Staphylococcus aureus proteins, we have developed a global ion library for data-independent acquisition approaches employing high-resolution time of flight or Orbitrap instruments for this human pathogen. We applied this ion library resource to investigate the time-resolved adaptation of S. aureus to the intracellular niche in human bronchial epithelial cells and in a murine pneumonia model. In epithelial cells, abundance changes for more than 400 S. aureus proteins were quantified, revealing, e.g., the precise temporal regulation of the SigB-dependent stress response and differential regulation of translation, fermentation, and amino acid biosynthesis. Using an in vivo murine pneumonia model, our data-independent acquisition quantification analysis revealed for the first time the in vivo proteome adaptation of S. aureus. From approximately 2.15 × 105 S. aureus cells, 578 proteins were identified. Increased abundance of proteins required for oxidative stress response, amino acid biosynthesis, and fermentation together with decreased abundance of ribosomal proteins and nucleotide reductase NrdEF was observed in post-infection samples compared to the pre-infection state.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Proteoma , Proteômica , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Biologia Computacional/métodos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Íons/metabolismo , Camundongos , Peptídeos , Proteômica/métodos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia
20.
Sci Data ; 1: 140031, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25977788

RESUMO

Mass spectrometry is the method of choice for deep and reliable exploration of the (human) proteome. Targeted mass spectrometry reliably detects and quantifies pre-determined sets of proteins in a complex biological matrix and is used in studies that rely on the quantitatively accurate and reproducible measurement of proteins across multiple samples. It requires the one-time, a priori generation of a specific measurement assay for each targeted protein. SWATH-MS is a mass spectrometric method that combines data-independent acquisition (DIA) and targeted data analysis and vastly extends the throughput of proteins that can be targeted in a sample compared to selected reaction monitoring (SRM). Here we present a compendium of highly specific assays covering more than 10,000 human proteins and enabling their targeted analysis in SWATH-MS datasets acquired from research or clinical specimens. This resource supports the confident detection and quantification of 50.9% of all human proteins annotated by UniProtKB/Swiss-Prot and is therefore expected to find wide application in basic and clinical research. Data are available via ProteomeXchange (PXD000953-954) and SWATHAtlas (SAL00016-35).


Assuntos
Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Proteínas/química , Proteoma , Humanos , Proteoma/química , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA