Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 16(6): 493-496, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110281

RESUMO

Here, we introduce fluorescence intensity fluctuation spectrometry for determining the identity, abundance and stability of protein oligomers. This approach was tested on monomers and oligomers of known sizes and was used to uncover the oligomeric states of the epidermal growth factor receptor and the secretin receptor in the presence and absence of their agonist ligands. This method is fast and is scalable for high-throughput screening of drugs targeting protein-protein interactions.


Assuntos
Fluorescência , Processamento de Imagem Assistida por Computador/métodos , Multimerização Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Ligantes , Microscopia Confocal , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Espectrometria de Fluorescência
2.
Curr Protoc ; 2(3): e384, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35312215

RESUMO

Fluorescence fluctuation spectroscopy (FFS) encompasses a bevy of techniques that involve analyzing fluorescence intensity fluctuations occurring due to fluorescently labeled molecules diffusing in and out of a microscope's focal region. Statistical analysis of these fluctuations may reveal the oligomerization (i.e., association) state of said molecules. We have recently developed a new FFS-based method, termed Two-Dimensional Fluorescence Intensity Fluctuation (2D FIF) spectrometry, which provides quantitative information on the size and stability of protein oligomers as a function of receptor concentration. This article describes protocols for employing FIF spectrometry to quantify the oligomerization of a membrane protein of interest, with specific instructions regarding cell preparation, image acquisition, and analysis of images given in detail. Application of the FIF Spectrometry Suite, a software package designed for applying FIF analysis on fluorescence images, is emphasized in the protocol. Also discussed in detail is the identification, removal, and/or analysis of inhomogeneous regions of the membrane that appear as bright spots. The 2D FIF approach is particularly suited to assess the effects of agonists and antagonists on the oligomeric size of membrane receptors of interest. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of live cells expressing protein constructs Basic Protocol 2: Image acquisition and noise correction Basic Protocol 3: Drawing and segmenting regions of interest Basic Protocol 4: Calculating the molecular brightness and concentration of individual image segments Basic Protocol 5: Combining data subsets using a manual procedure (Optional) Alternate Protocol 1: Combining data subsets using the advanced FIF spectrometry suite (Optional; alternative to Basic Protocol 5) Basic Protocol 6: Performing meta-analysis of brightness spectrograms Alternate Protocol 2: Performing meta-analysis of brightness spectrograms (alternative to Basic Protocol 6) Basic Protocol 7: Spot extraction and analysis using a manual procedure or by writing a program (Optional) Alternate Protocol 3: Automated spot extraction and analysis (Optional; alternative to Protocol 7) Support Protocol: Monomeric brightness determination.


Assuntos
Proteínas , Membrana Celular , Difusão , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120133, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34243141

RESUMO

Understanding the photophysical properties of fluorescent proteins (FPs), such as emission and absorption spectra, molecular brightness, photostability, and photo-switching, is critical to the development of criteria for their selection as tags for fluorescent-based biological applications. While two-photon excitation imaging techniques have steadily gained popularity - due to comparatively deeper penetration depth, reduced out-of-focus photobleaching, and wide separation between emission spectra and two-photon excitation spectra -, most studies reporting on the photophysical properties of FPs tend to remain focused on single-photon excitation. Here, we report our investigation of the photophysical properties of several commonly used fluorescent proteins using two-photon microscopy with spectral resolution in both excitation and emission. Our measurements indicate that not only the excitation (and sometimes emission) spectra of FPs may be markedly different between single-photon and two-photon excitation, but also their relative brightness and their photo-stability. A good understanding of the photophysical properties of FPs under two-photon excitation is essential for choosing the right tag(s) for a desired experiment.


Assuntos
Corantes Fluorescentes , Fótons , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Fotodegradação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA