RESUMO
BACKGROUND: Although FDG-PET is widely used in cancer, its role in gastric cancer (GC) is still controversial due to variable [18F]fluorodeoxyglucose ([18F]FDG) uptake. Here, we sought to develop a genetic signature to predict high FDG-avid GC to plan individualized PET and investigate the molecular landscape of GC and its association with glucose metabolic profiles noninvasively evaluated by [18F]FDG-PET. METHODS: Based on a genetic signature, PETscore, representing [18F]FDG avidity, was developed by imaging data acquired from thirty patient-derived xenografts (PDX). The PETscore was validated by [18F]FDG-PET data and gene expression data of human GC. The PETscore was associated with genomic and transcriptomic profiles of GC using The Cancer Genome Atlas. RESULTS: Five genes, PLS1, PYY, HBQ1, SLC6A5, and NAT16, were identified for the predictive model for [18F]FDG uptake of GC. The PETscore was validated in independent PET data of human GC with qRT-PCR and RNA-sequencing. By applying PETscore on TCGA, a significant association between glucose uptake and tumor mutational burden as well as genomic alterations were identified. CONCLUSION: Our findings suggest that molecular characteristics are underlying the diverse metabolic profiles of GC. Diverse glucose metabolic profiles may apply to precise diagnostic and therapeutic approaches for GC.
Assuntos
Neoplasias Gástricas , Fluordesoxiglucose F18 , Glucose , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Metaboloma , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismoRESUMO
BACKGROUND: Several studies have previously reported that laparoscopic surgery using an energy sealing device generates hazardous surgical smoke. However, the droplets appearing on the surface of peritoneal fluid irrigated with saline, after dissection phase of laparoscopic gastrectomy were ignored for a long time. This study aimed to investigate the composition and clinical significance of these droplet particles. METHODS: This study prospectively enrolled 15 patients with early gastric cancer (cT1NanyM0) who were scheduled for laparoscopic gastrectomy. Floating phases of peritoneal irrigation fluid containing droplets in dissected area were retrieved before and after surgical dissection. Using gas chromatography analysis, the areas under the peak were compared between the samples retrieved before and after surgical dissection. We also analyzed if the area value with significant change was related to the inflammatory response. RESULTS: In gas chromatography, the area values after laparoscopic surgical dissection were significantly increased in 10 out of 37 kinds of fatty acids, compared to those before surgical dissection. The significant increase in area value of α-linoleic and eicosadienoic acids were positively correlated with the elevated level of C-reactive protein at postoperative day 2 (Spearman's ρ = 0.843, P < 0.001; Spearman's ρ = 0.785, P = 0.001). CONCLUSIONS: The lipid droplets, generated after laparoscopic lymphadenectomy during gastric cancer surgery, contained various types of fatty acids, and some of them have been found to be associated with inflammatory response.
Assuntos
Laparoscopia , Neoplasias Gástricas , Líquido Ascítico/metabolismo , Ácidos Graxos , Gastrectomia/métodos , Humanos , Laparoscopia/métodos , Gotículas Lipídicas/metabolismo , Excisão de Linfonodo/métodos , Estudos Retrospectivos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/cirurgiaRESUMO
BACKGROUND: Gastric cancer metastasis is a highly fatal disease with a five-year survival rate of less than 5%. One major obstacle in studying gastric cancer metastasis is the lack of faithful models available. The cancer xenograft mouse models are widely used to elucidate the mechanisms of cancer development and progression. Current procedures for creating cancer xenografts include both heterotopic (i.e., subcutaneous) and orthotopic transplantation methods. Compared to the heterotopic model, the orthotopic model has been shown to be the more clinically relevant design as it enables the development of cancer metastasis. Although there are several methods in use to develop the orthotopic gastric cancer model, there is not a model which uses various types of tumor materials, such as soft tissues, semi-liquid tissues, or culture derivatives, due to the technical challenges. Thus, developing the applicable orthotopic model which can utilize various tumor materials is essential. RESULTS: To overcome the known limitations of the current orthotopic gastric cancer models, such as exposure of tumor fragments to the neighboring organs or only using firm tissues for the orthotopic implantation, we have developed a new method allowing for the complete insertion of soft tissue fragments or homogeneously minced tissues into the stomach submucosa layer of the immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse. With this completely-closed transplantation method, tumors with various types of tissue may be used to establish orthotopic gastric cancer models without the risks of exposure to nearby organs or cell leakage. This surgical procedure was highly reproducible in generating forty-eight mouse models with a surgery success rate of 96% and tumor formation of 93%. Among four orthotopic patient-derived xenograft (PDX) models that we generated in this study, we verified that the occurrence of organotropic metastasis in either the liver or peritoneal cavity was the same as that of the donor patients. CONCLUSION: Here we describe a new protocol, step by step, for the establishment of orthotopic xenograft of gastric cancer. This novel technique will be able to increase the use of orthotopic models in broader applications for not only gastric cancer research but also any research related to the stomach microenvironment.
RESUMO
BACKGROUND: Spasmolytic polypeptide-expressing metaplasia (SPEM) is considered a precursor lesion of intestinal metaplasia and intestinal-type gastric cancer (GC), but little is known about microRNA alterations during metaplasia and GC developments. Here, we investigate miR-30a expression in gastric lesions and identify its novel target gene which is associated with the intestinal-type GC. METHODS: We conducted in situ hybridization and qRT-PCR to determine miR-30a expression in gastric tissues. miR-30a functions were determined through induction or inhibition of miR-30a in GC cell lines. A gene microarray was utilized to confirm miR-30a target genes in GC, and siRNA-mediated target gene suppression and immunostaining were performed. The Cancer Genome Atlas data were utilized to validate gene expressions. RESULTS: We found down-regulation of miR-30a during chief cell transdifferentiation into SPEM. MiR-30a level was also reduced in the early stage of GC, and its level was maintained in advanced GC. We identified a novel target gene of miR-30a and ITGA2, and our results showed that either ectopic expression of miR-30a or ITGA2 knockdown suppressed GC cell proliferation, migration, and tumorigenesis. Levels of ITGA2 inversely correlated with levels of miR-30a in human intestinal-type GC. CONCLUSION: We found down-regulation of miR-30a in preneoplastic lesions and its tumor-suppressive functions by targeting ITGA2 in GC. The level of ITGA2, which functions as an oncogene, was up-regulated in human GC. The results of this study suggest that coordination of the miR-30a-ITGA2 axis may serve as an important mechanism in the development of gastric precancerous lesions and intestinal-type GC.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica , Integrina alfa2/metabolismo , Neoplasias Intestinais/patologia , MicroRNAs/genética , Neoplasias Gástricas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Integrina alfa2/genética , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
ABSTRACT: Imaging glucose metabolism with [18F]fluorodeoxyglucose positron emission tomography has transformed the diagnostic and treatment algorithms of numerous malignancies in clinical practice. The cancer phenotype, though, extends beyond dysregulation of this single pathway. Reprogramming of other pathways of metabolism, as well as altered perfusion and hypoxia, also typifies malignancy. These features provide other opportunities for imaging that have been developed and advanced into humans. In this review, we discuss imaging metabolism, perfusion, and hypoxia in cancer, focusing on the underlying biology to provide context. We conclude by highlighting the ability to image multiple facets of biology to better characterize cancer and guide targeted treatment.
Assuntos
Fluordesoxiglucose F18 , Neoplasias , Tomografia por Emissão de Pósitrons , Humanos , Fluordesoxiglucose F18/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Hipóxia/metabolismo , Hipóxia/diagnóstico por imagemRESUMO
Early response assessment is critical for personalizing cancer therapy. Emerging therapeutic regimens with encouraging results in the wild-type (WT) KRAS colorectal cancer (CRC) setting include inhibitors of epidermal growth factor receptor (EGFR) and glutaminolysis. Towards predicting clinical outcome, this preclinical study evaluated non-invasive positron emission tomography (PET) with (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG) in treatment-sensitive and treatment-resistant WT KRAS CRC patient-derived xenografts (PDXs). Tumor-bearing mice were imaged with [18F]FSPG PET before and one week following the initiation of treatment with either EGFR-targeted monoclonal antibody (mAb) therapy, glutaminase inhibitor therapy, or the combination. Imaging was correlated with tumor volume and histology. In PDX that responded to therapy, [18F]FSPG PET was significantly decreased from baseline at 1-week post-therapy, prior to changes in tumor volume. In contrast, [18F]FSPG PET was not decreased in non-responding PDX. These data suggest that [18F]FSPG PET may serve as an early metric of response to EGFR and glutaminase inhibition in the WT KRAS CRC setting.
Assuntos
Neoplasias Colorretais , Glutaminase , Humanos , Camundongos , Animais , Glutaminase/metabolismo , Glutamina , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Glutamatos/metabolismo , Estudos de Viabilidade , Tomografia por Emissão de Pósitrons/métodos , Receptores ErbB/metabolismo , Modelos Animais de Doenças , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológicoRESUMO
PURPOSE: A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. MATERIALS AND METHODS: An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6-8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). RESULTS: Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. CONCLUSIONS: Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2-3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.
RESUMO
OBJECTIVES: The noncoding RNAs (ncRNAs) play important roles in gastric cancer. Most studies have focused on the functions and influence of ncRNAs, but seldom on their maturation. DEAD box genes are a family of RNA-binding proteins that may influence the development of ncRNAs, which attracted our attention. By combining a small sample for high-throughput gene microarray screening with large samples of The Cancer Genome Atlas (TCGA) data and our cohort, we aimed to find some gastric cancer-related genes. We evaluated the clinical significance and prognostic value of candidate gene DDX18, which is overexpressed in gastric cancer tissues. To provide a theoretical basis for the development of new therapeutic targets for the treatment of gastric cancer, we investigated its effect on the malignant biological behavior of gastric cancer in vitro and in vivo, and also discuss its mechanism of action. METHODS: (i) The differential profiling of mRNA expression in five pairs of gastric cancer and adjacent normal tissues was studied by Arraystar Human mRNA Microarray. By combining this with TCGA data and our cohort, we finally filtered out DDX18, which was upregulated in gastric cancer tissues, for further investigation. (ii) The protein expression of DDX18 was detected by immunohistochemistry staining. Then the relationship between the DDX18 expression level and the clinicopathological data and prognosis was analyzed. (iii) A CCK-8 assay and colony formation assay were used to evaluate the effect of DDX18 on cell growth and proliferation in vitro. A transwell assay was also performed to examine the migration and invasion of gastric cancer cells. Cell apoptosis was analyzed by using a fluorescein isothiocyanate-annexin V/propidium iodide double-staining assay. To identify the role of DDX18 in the tumorigenic ability of gastric cancer cells in vivo, we also established a subcutaneous gastric cancer xenograft model. Coimmunoprecipitation, small RNAseq, and western blotting were performed to explore the mechanism of action of DDX18 in gastric cancer. A patient-derived xenograft (PDX) model was used to confirm the effect of DDX18 in gastric cancer tissues. RESULT: (i) DDX18 was upregulated in gastric cancer tumor tissues from a TCGA database and our cohort. The expression of DDX18 was also closely related to tumor volume, Borrmann classification, degree of tumor differentiation, cancer embolus, lymph node metastasis, and TNM stage. (ii) DDX18 could promote cell proliferation, migration, and invasion and inhibit cell apoptosis in vivo and in vitro. (iii) DDX18 could promote the maturation of microRNA-21 through direct interaction with Drosha, decreasing PTEN, which could upregulate the AKT signaling pathway. (iv) The PDX model showed that DDX18 could promote the proliferation of gastric cancer tissues by means of the PTEN-AKT signaling pathway. CONCLUSIONS: (i) DDX18 can be treated as a molecular marker to assess the prognosis of patients with gastric cancer. (ii) DDX18 could be a potential therapeutic target in gastric cancer.
RESUMO
PURPOSE: The utility of 18-fluordesoxyglucose positron emission tomography ([18F]-FDG-PET) combined with computer tomography or magnetic resonance imaging (MRI) in gastric cancer remains controversial and a rationale for patient selection is desired. This study aims to establish a preclinical patient-derived xenograft (PDX) based [18F]-FDG-PET/MRI protocol for gastric cancer and compare different PDX models regarding tumor growth and FDG uptake. MATERIALS AND METHODS: Female BALB/c nu/nu mice were implanted orthotopically and subcutaneously with gastric cancer PDX. [18F]-FDG-PET/MRI scanning protocol evaluation included different tumor sizes, FDG doses, scanning intervals, and organ-specific uptake. FDG avidity of similar PDX cases were compared between ortho- and heterotopic tumor implantation methods. Microscopic and immunohistochemical investigations were performed to confirm tumor growth and correlate the glycolysis markers glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) with FDG uptake. RESULTS: Organ-specific uptake analysis showed specific FDG avidity of the tumor tissue. Standard scanning protocol was determined to include 150 µCi FDG injection dose and scanning after one hour. Comparison of heterotopic and orthotopic implanted mice revealed a long growth interval for orthotopic models with a high uptake in similar PDX tissues. The H-score of GLUT1 and HK2 expression in tumor cells correlated with the measured maximal standardized uptake value values (GLUT1: Pearson r=0.743, P=0.009; HK2: Pearson r=0.605, P=0.049). CONCLUSIONS: This preclinical gastric cancer PDX based [18F]-FDG-PET/MRI protocol reveals tumor specific FDG uptake and shows correlation to glucose metabolic proteins. Our findings provide a PET/MRI PDX model that can be applicable for translational gastric cancer research.
RESUMO
Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X1: 1-5min), ethanol concentration, (X2: 0-100%) and microwave power (X3: 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X1, 75% X2, and 160W X3. The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities.
Assuntos
Diterpenos do Tipo Caurano/química , Glucosídeos/química , Glicosídeos/química , Folhas de Planta/química , Stevia/química , Micro-Ondas , Redes Neurais de ComputaçãoRESUMO
Local protein synthesis mediates precise spatio-temporal regulation of gene expression for neuronal functions such as long-term plasticity, axon guidance and regeneration. To reveal the underlying mechanisms of local translation, it is crucial to understand mRNA transport, localization and translation in live neurons. Among various techniques for mRNA analysis, fluorescence microscopy has been widely used as the most direct method to study localization of mRNA. Live-cell imaging of single RNA molecules is particularly advantageous to dissect the highly heterogeneous and dynamic nature of messenger ribonucleoprotein (mRNP) complexes in neurons. Here, we review recent advances in the study of mRNA localization and translation in live neurons using novel techniques for single-RNA imaging.