Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proteomics ; 24(1-2): e2300151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37904306

RESUMO

The Cys-loop pentameric ligand-gated ion channels comprise a dynamic group of proteins that have been extensively studied for decades, yielding a wealth of findings at both the structural and functional levels. The nicotinic acetylcholine receptor (nAChR) is no exception, as it is part of this large protein family involved in proper organismal function. Our efforts have successfully produced a highly pure nAChR in detergent complex (nAChR-DC), enabling more robust studies to be conducted on it, including beginning to experiment with high-throughput crystallization. Our homogeneous product has been identified and extensively characterized with 100% identity using Nano Lc MS/MS and MALDI ToF/ToF for each nAChR subunit. Additionally, the N-linked glycans in the Torpedo californica-nAChR (Tc-nAChR) subunits have been identified. To study this, the Tc-nAChR subunits were digested with PNGase F and the released glycans were analyzed by MALDI-ToF. The MS results showed the presence of high-mannose N-glycan in all native Tc-nAChR subunits. Specifically, the oligommanose population Man8-9GlcNac2 with peaks at m/z 1742 and 1904 ([M + Na]+ ions) were observed.


Assuntos
Nicotina , Receptores Nicotínicos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Acetilcolina/metabolismo , Torpedo/metabolismo , Espectrometria de Massas em Tandem , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo
2.
Antimicrob Agents Chemother ; : e0164323, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639491

RESUMO

The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.

3.
Anal Bioanal Chem ; 413(18): 4673-4680, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34046698

RESUMO

A fast PCR-assisted impedimetric biosensor was developed for the selective detection of the clbN gene from the polyketide synthase (pks) genomic island in real Escherichia coli samples. This genomic island is responsible for the production of colibactin, a harmful genotoxin that has been associated with colorectal cancer. The experimental protocol consisted of immobilizing the designated forward primer onto an Au electrode surface to create the sensing probe, followed by PCR temperature cycling in blank, positive, and negative DNA controls. Target DNA identification was possible by monitoring changes in the system's charge transfer resistance values (Rct) before and after PCR treatment through electrochemical impedance spectroscopy (EIS) analysis. Custom-made, flexible gold electrodes were fabricated using chemical etching optical lithography. A PCR cycle study determined the optimum conditions to be at 6 cycles providing fast results while maintaining a good sensitivity. EIS data for the DNA recognition process demonstrated the successful distinction between target interaction resulting in an increase in resistance to charge transfer (Rct) percentage change of 176% for the positive DNA control vs. 21% and 20% for the negative and non-DNA-containing controls, respectively. Results showed effective fabrication of a fast, PCR-based electrochemical biosensor for the detection of pks genomic island with a calculated limit of detection of 17 ng/µL.


Assuntos
Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica/métodos , Escherichia coli/genética , Genoma Bacteriano , Peptídeos/genética , Policetídeo Sintases/genética , Reação em Cadeia da Polimerase/métodos , Limite de Detecção , Policetídeos
4.
J Biol Chem ; 288(15): 10841-8, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23430744

RESUMO

Thioesterase activity is typically required for the release of products from polyketide synthase enzymes, but no such enzyme has been characterized in deep-sea bacteria associated with the production of polyunsaturated fatty acids. In this work, we have expressed and purified the Orf6 thioesterase from Photobacterium profundum. Enzyme assays revealed that Orf6 has a higher specific activity toward long-chain fatty acyl-CoA substrates (palmitoyl-CoA and eicosapentaenoyl-CoA) than toward short-chain or aromatic acyl-CoA substrates. We determined a high resolution (1.05 Å) structure of Orf6 that reveals a hotdog hydrolase fold arranged as a dimer of dimers. The putative active site of this structure is occupied by additional electron density not accounted for by the protein sequence, consistent with the presence of an elongated compound. A second crystal structure (1.40 Å) was obtained from a crystal that was grown in the presence of Mg(2+), which reveals the presence of a binding site for divalent cations at a crystal contact. The Mg(2+)-bound structure shows localized conformational changes (root mean square deviation of 1.63 Å), and its active site is unoccupied, suggesting a mechanism to open the active site for substrate entry or product release. These findings reveal a new thioesterase enzyme with a preference for long-chain CoA substrates in a deep-sea bacterium whose potential range of applications includes bioremediation and the production of biofuels.


Assuntos
Proteínas de Bactérias/química , Fases de Leitura Aberta , Palmitoil Coenzima A/química , Photobacterium/enzimologia , Multimerização Proteica/fisiologia , Tioléster Hidrolases/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Palmitoil Coenzima A/metabolismo , Estrutura Quaternária de Proteína , Especificidade por Substrato/fisiologia
5.
Vaccines (Basel) ; 11(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243079

RESUMO

We have developed a pipeline to express, purify, and characterize HIV envelope protein (Env) gp145 from Chinese hamster ovary cells, to accelerate the production of a promising vaccine candidate. First in shake flasks, then in bioreactors, we optimized the growth conditions. By adjusting the pH to 6.8, we increased expression levels to 101 mg/L in a 50 L bioreactor, nearly twice the previously reported titer value. A battery of analytical methods was developed in accordance with current good manufacturing practices to ensure a quality biopharmaceutical. Imaged capillary isoelectric focusing verified proper glycosylation of gp145; dynamic light scattering confirmed the trimeric arrangement; and bio-layer interferometry and circular dichroism analysis demonstrated native-like properties (i.e., antibody binding and secondary structure). MALDI-TOF mass spectrometry was used as a multi-attribute platform for accurate mass determination, glycans analysis, and protein identification. Our robust analysis demonstrates that our gp145 product is very similar to a reference standard and emphasizes the importance of accurate characterization of a highly heterogeneous immunogen for the development of an effective vaccine. Finally, we present a novel guanosine microparticle with gp145 encapsulated and displayed on its surface. The unique properties of our gp145 microparticle make it amenable to use in future preclinical and clinical trials.

6.
J Biol Chem ; 285(35): 27045-27056, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20573956

RESUMO

Malaria parasites contain a complete glutathione (GSH) redox system, and several enzymes of this system are considered potential targets for antimalarial drugs. Through generation of a gamma-glutamylcysteine synthetase (gamma-GCS)-null mutant of the rodent parasite Plasmodium berghei, we previously showed that de novo GSH synthesis is not critical for blood stage multiplication but is essential for oocyst development. In this study, phenotype analyses of mutant parasites lacking expression of glutathione reductase (GR) confirmed that GSH metabolism is critical for the mosquito oocyst stage. Similar to what was found for gamma-GCS, GR is not essential for blood stage growth. GR-null parasites showed the same sensitivity to methylene blue and eosin B as wild type parasites, demonstrating that these compounds target molecules other than GR in Plasmodium. Attempts to generate parasites lacking both GR and gamma-GCS by simultaneous disruption of gr and gamma-gcs were unsuccessful. This demonstrates that the maintenance of total GSH levels required for blood stage survival is dependent on either de novo GSH synthesis or glutathione disulfide (GSSG) reduction by Plasmodium GR. Our studies provide new insights into the role of the GSH system in malaria parasites with implications for the development of drugs targeting GSH metabolism.


Assuntos
Glutationa Redutase/metabolismo , Oocistos/enzimologia , Plasmodium berghei/enzimologia , Proteínas de Protozoários/metabolismo , Animais , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Azul de Eosina I , Feminino , Fluoresceínas/farmacologia , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Dissulfeto de Glutationa/genética , Dissulfeto de Glutationa/metabolismo , Glutationa Redutase/genética , Malária/tratamento farmacológico , Malária/enzimologia , Malária/genética , Azul de Metileno/farmacologia , Camundongos , Plasmodium berghei/genética , Proteínas de Protozoários/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-33571843

RESUMO

A reversed phase high performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of recombinant HIV-1 gp145 produced in CHO-K1 cells, as measured directly from culture supernatants. Samples were diluted in 50% D-PBS and 50% PowerCHO-2 (PC2) spent medium, and resolved on a Zorbax 300SB-C8 Rapid Resolution (2.1 × 50 mm, 3.5 µm) column, fitted with a C8 guard column (Zorbax 300SB-C8, 2.1 × 12.5 mm, 5 µm), using 0.1% TFA and 2% n-propanol in LC-MS water as mobile phase A and 0.1% TFA, 70% isopropanol, and 20% acetonitrile in LC-MS water as mobile phase B. The column temperature was 80 °C, the flow rate was 0.4 mL/min and the absorbance was monitored at 280 nm. The procedures and capabilities of the method were evaluated against the criteria for linearity, limit of detection (LOD), accuracy, repeatability, and robustness as defined by the International Conference on Harmonization (ICH) 2005 Q2(R1) guidelines. Two different variants of the HIV-1 envelope protein (Env), CO6980v0c22 gp145 and SF162 gp140, were analyzed and their retention times were found to be different. The method showed good linearity (R2 = 0.9996), a lower LOD of 2.4 µg/mL, and an average recovery of 101%. The analysis includes measurements of accuracy, inter-user precision, and robustness. Overall, we present a RP-HPLC method that could be applied for the quantitation of cell culture titers for this and other variants of HIV Env following ICH guidelines.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Produtos do Gene env do Vírus da Imunodeficiência Humana/análise , Animais , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Limite de Detecção , Modelos Lineares , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-34444002

RESUMO

The U.S. Hispanic female population has one of the highest breast cancer (BC) incidence and mortality rates, while BC is the leading cause of cancer death in Puerto Rican women. Certain foods may predispose to carcinogenesis. Our previous studies indicate that consuming combined soy isoflavones (genistein, daidzein, and glycitein) promotes tumor metastasis possibly through increased protein synthesis activated by equol, a secondary dietary metabolite. Equol is a bacterial metabolite produced in about 20-60% of the population that harbor and exhibit specific gut microbiota capable of producing it from daidzein. The aim of the current study was to investigate the prevalence of equol production in Puerto Rican women and identify the equol producing microbiota in this understudied population. Herein, we conducted a cross-sectional characterization of equol production in a clinically based sample of eighty healthy 25-50 year old Puerto Rican women. Urine samples were collected and evaluated by GCMS for the presence of soy isoflavones and metabolites to determine the ratio of equol producers to equol non-producers. Furthermore, fecal samples were collected for gut microbiota characterization on a subset of women using next generation sequencing (NGS). We report that 25% of the participants were classified as equol producers. Importantly, the gut microbiota from equol non-producers demonstrated a higher diversity. Our results suggest that healthy women with soy and high dairy consumption with subsequent equol production may result in gut dysbiosis by having reduced quantities (diversity) of healthy bacterial biomarkers, which might be associated to increased diseased outcomes (e.g., cancer, and other diseases).


Assuntos
Equol , Isoflavonas , Adulto , Estudos Transversais , Suplementos Nutricionais , Feminino , Hispânico ou Latino , Humanos , Pessoa de Meia-Idade , Pós-Menopausa
9.
Front Pharmacol ; 11: 246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256353

RESUMO

Plasmodium falciparum parasites are increasingly drug-resistant, requiring the search for novel antimalarials with distinct modes of action. Enzymes in the glutathione pathway, including glutathione S-transferase (GST), show promise as novel antimalarial targets. This study aims to better understand the biological function of Plasmodium GST, assess its potential as a drug target, and identify novel antiplasmodial compounds using the rodent model P. berghei. By using reverse genetics, we provided evidence that GST is essential for survival of P. berghei intra-erythrocytic stages and is a valid target for drug development. A structural model of the P. berghei glutathione S-transferase (PbGST) protein was generated and used in a structure-based screening of 900,000 compounds from the ChemBridge Hit2Lead library. Forty compounds were identified as potential inhibitors and analyzed in parasite in vitro drug susceptibility assays. One compound, CB-27, exhibited antiplasmodial activity with an EC50 of 0.5 µM toward P. berghei and 0.9 µM toward P. falciparum multidrug-resistant Dd2 clone B2 parasites. Moreover, CB-27 showed a concentration-dependent inhibition of the PbGST enzyme without inhibiting the human ortholog. A shape similarity screening using CB-27 as query resulted in the identification of 24 novel chemical scaffolds, with six of them showing antiplasmodial activity ranging from EC50 of 0.6-4.9 µM. Pharmacokinetic and toxicity predictions suggest that the lead compounds have drug-likeness properties. The antiplasmodial potency, the absence of hemolytic activity, and the predicted drug-likeness properties position these compounds for lead optimization and further development as antimalarials.

10.
PLoS One ; 15(6): e0231679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559193

RESUMO

The envelope glycoprotein (Env) of the human immunodeficiency virus (HIV), has been the primary target for the development of a protective vaccine against infection. The extensive N-linked glycosylation on Env is an important consideration as it may affect efficacy, stability, and expression yields. The expression host has been shown to influence the extent and type of glycosylation that decorates the protein target. Here, we report the glycosylation profile of the candidate subtype C immunogen CO6980v0c22 gp145, which is currently in Phase I clinical trials, produced in two different host cells: CHO-K1 and Expi293F. The amino acid sequence for both glycoproteins was confirmed to be identical by peptide mass fingerprinting. However, the isoelectric point of the proteins differed; 4.5-5.5 and 6.0-7.0 for gp145 produced in CHO-K1 and Expi293F, respectively. These differences in pI were eliminated by enzymatic treatment with sialidase, indicating a large difference in the incorporation of sialic acid between hosts. This dramatic difference in the number of sialylated glycans between hosts was confirmed by analysis of PNGase F-released glycans using MALDI-ToF MS. These differences in glycosylation, however, did not greatly translate into differences in antibody recognition. Biosensor assays showed that gp145 produced in CHO-K1 had similar affinity toward the broadly neutralizing antibodies, 2G12 and PG16, as the gp145 produced in Expi293F. Additionally, both immunogens showed the same reactivity against plasma of HIV-infected patients. Taken together, these results support the notion that there are sizeable differences in the glycosylation of Env depending on the expression host. How these differences translate to vaccine efficacy remains unknown.


Assuntos
Glicopeptídeos/análise , Anticorpos Anti-HIV/imunologia , HIV-1/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , Células CHO , Cricetinae , Cricetulus , Feminino , Glicosilação , Células HEK293 , Humanos , Pessoa de Meia-Idade , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
11.
P R Health Sci J ; 28(3): 251-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19715117

RESUMO

Marine ecosystems are a source of biologically active compounds, many of which are currently in clinical use. With the goal of increasing the availability and the chemical diversity of these important compounds, more researchers are applying the tools of biotechnology to the discovery and production of marine natural products. This review summarizes the recent efforts made towards the characterization of the biochemical pathways that result in the production of marine natural products, with an emphasis on the work aimed at understanding the enzymatic activity involved in the biosynthesis of marine natural products.


Assuntos
Bioquímica , Produtos Biológicos , Biotecnologia , Biologia Marinha , Actinobacteria , Briostatinas , Ácidos Graxos Ômega-3 , Lactonas , Pirróis
12.
Sci Rep ; 9(1): 16011, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690733

RESUMO

Acyl carrier proteins (ACPs) are essential to the production of fatty acids. In some species of marine bacteria, ACPs are arranged into tandem repeats joined by peptide linkers, an arrangement that results in high fatty acid yields. By contrast, Escherichia coli, a relatively low producer of fatty acids, uses a single-domain ACP. In this work, we have engineered the native E. coli ACP into tandem di- and tri-domain constructs joined by a naturally occurring peptide linker from the PUFA synthase of Photobacterium profundum. The size of these tandem fused ACPs was determined by size exclusion chromatography to be higher (21 kDa, 36 kDa and 141 kDa) than expected based on the amino acid sequence (12 kDa, 24 kDa and 37 kDa, respectively) suggesting the formation of a flexible extended conformation. Structural studies using small-angle X-ray scattering (SAXS), confirmed this conformational flexibility. The thermal stability for the di- and tri-domain constructs was similar to that of the unfused ACP, indicating a lack of interaction between domains. Lastly, E. coli cultures harboring tandem ACPs produced up to 1.6 times more fatty acids than wild-type ACP, demonstrating the viability of ACP fusion as a method to enhance fatty acid yield in bacteria.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Photobacterium/metabolismo , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
13.
Front Genet ; 10: 631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354787

RESUMO

The gut microbiota has been implicated in a number of normal and disease biological processes. Recent studies have identified a subset of gut bacterial genes as potentially involved in inflammatory processes. In this work, we explore the sequence variability for some of these bacterial genes using a combination of deep sequencing and oligotyping, a data analysis application that identifies mutational hotspots in short stretches of DNA. The genes for pks island, tcpC and usp, all harbored by certain strains of E. coli and all implicated in inflammation, were amplified by PCR directly from stool samples and subjected to deep amplicon sequencing. For comparison, the same genes were amplified from individual bacterial clones. The amplicons for pks island and tcpC from stool samples showed minimal levels of heterogeneity comparable with the individual clones. The amplicons for usp from stool samples, by contrast, revealed the presence of five distinct oligotypes in two different regions. Of these, the oligotype GT was found to be present in the control uropathogenic clinical isolate and also detected in stool samples from individuals with colorectal cancer (CRC). Mutational hotspots were mapped onto the USP protein, revealing possible substitutions around Leu110, Glu114, and Arg115 in the middle of the pyocin domain (Gln110, Gln114, and Thr115 in most healthy samples), and also Arg218 in the middle of the nuclease domain (His218 in the uropathogenic strain). All of these results suggest that a level of variability within bacterial pro-inflammatory genes could explain differences in bacterial virulence and phenotype.

14.
Diseases ; 7(1)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717148

RESUMO

Gut bacterial toxins are thought to contribute to the development of colorectal cancer (CRC). This study examines the presence of specific gut bacterial toxin genes in stool samples from individuals with colorectal neoplasia (adenomas and/or CRC). The presence of bacterial genes encoding genotoxic or pro-inflammatory factors (pks, tcpC, gelE, cnf-1, AMmurB, and usp) was established by PCR of stool samples from individuals from mainland US (n = 30; controls = 10, adenoma = 10, CRC = 10) and from Puerto Rico (PR) (n = 33; controls = 13; adenomas = 8; CRC = 12). Logistic regression models and multinomial logistic regression models were used to estimate the magnitude of association. Distinct bacterial gene profiles were observed in each sample cohort. In individuals with CRC, AMmurB was detected more frequently in samples from the US and gelE in samples from PR. In samples from PR, individuals with ≥2 gut bacterial toxin genes in stool had higher odds of having colorectal neoplasia (OR = 11.0, 95%: CI 1.0⁻637.1): however, no significant association between bacterial genes and colorectal neoplasia was observed in the US cohort. Further analyses are warranted in a larger cohort to validate these preliminary findings, but these encouraging results highlight the importance of developing bacterial markers as tools for CRC diagnosis or risk stratification.

15.
Biochemistry ; 47(41): 10933-9, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18803401

RESUMO

A number of alanine and more conservative mutants of residues in the fourth domain of thrombomodulin (TM) were prepared and assayed for protein C activation and for thrombin binding. Several of the alanine mutations appeared to cause misfolding or structural defects as assessed by poor expression and/or NMR HSQC experiments, while more conservative mutations at the same site appeared to allow correct folding and preserved activity. Several of the conservative mutants bound more weakly to thrombin despite the fact that the fourth domain does not directly contact thrombin in the crystal structure of the thrombin-TM complex. A few of the mutant TM fragments bound thrombin with an affinity similar to that of the wild type but exhibited decreases in k cat for protein C activation. These mutants were also less able to cause a change in the steady state fluorescence of fluorescein-EGR-chloromethylketone bound to the active site of thrombin. These results suggest that some residues within the fourth domain of TM may primarily interact with protein C but others are functionally important for altering the way TM interacts with thrombin. Residues in the fourth domain that primarily affect k cat for protein C activation may do this by changing the active site of thrombin.


Assuntos
Fator de Crescimento Epidérmico/química , Mutação , Trombina/metabolismo , Trombomodulina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Fator de Crescimento Epidérmico/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Trombina/química , Trombomodulina/química
16.
Protein Sci ; 27(5): 969-975, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29520922

RESUMO

FabA and FabZ are the two dehydratase enzymes in Escherichia coli that catalyze the dehydration of acyl intermediates in the biosynthesis of fatty acids. Both enzymes form obligate dimers in which the active site contains key amino acids from both subunits. While FabA is a soluble protein that has been relatively straightforward to express and to purify from cultured E. coli, FabZ has shown to be mostly insoluble and only partially active. In an effort to increase the solubility and activity of both dehydratases, we made constructs consisting of two identical subunits of FabA or FabZ fused with a naturally occurring peptide linker, so as to force their dimerization. The fused dimer of FabZ (FabZ-FabZ) was expressed as a soluble enzyme with an ninefold higher activity in vitro than the unfused FabZ. This construct exemplifies a strategy for the improvement of enzymes from the fatty acid biosynthesis pathways, many of which function as dimers, catalyzing critical steps for the production of fatty acids.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Ácido Graxo Sintase Tipo II/metabolismo , Hidroliases/metabolismo , Biocatálise , Desidratação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/isolamento & purificação , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Hidroliases/química , Hidroliases/isolamento & purificação , Modelos Moleculares , Multimerização Proteica , Solubilidade
17.
Front Genet ; 9: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692798

RESUMO

Background: The human gut microbiota is a dynamic community of microorganisms that mediate important biochemical processes. Differences in the gut microbial composition have been associated with inflammatory bowel diseases (IBD) and other intestinal disorders. In this study, we quantified and compared the frequencies of eight genotoxic and/or pro-inflammatory bacterial genes found in metagenomic Whole Genome Sequences (mWGSs) of samples from individuals with IBD vs. a cohort of healthy human subjects. Methods: The eight selected gene sequences were clbN, clbB, cif, cnf-1, usp, tcpC from Escherichia coli, gelE from Enterococcus faecalis and murB from Akkermansia muciniphila. We also included the sequences for the conserved murB genes from E. coli and E. faecalis as markers for the presence of Enterobacteriaceae or Enterococci in the samples. The gene sequences were chosen based on their previously reported ability to disrupt normal cellular processes to either promote inflammation or to cause DNA damage in cultured cells or animal models, which could be linked to a role in IBD. The selected sequences were searched in three different mWGS datasets accessed through the Human Microbiome Project (HMP): a healthy cohort (N = 251), a Crohn's disease cohort (N = 60) and an ulcerative colitis cohort (N = 17). Results: Firstly, the sequences for the murB housekeeping genes from Enterobacteriaceae and Enterococci were more frequently found in the IBD cohorts (32% E. coli in IBD vs. 12% in healthy; 13% E. faecalis in IBD vs. 3% in healthy) than in the healthy cohort, confirming earlier reports of a higher presence of both of these taxa in IBD. For some of the sequences in our study, especially usp and gelE, their frequency was even more sharply increased in the IBD cohorts than in the healthy cohort, suggesting an association with IBD that is not easily explained by the increased presence of E. coli or E. faecalis in those samples. Conclusion: Our results suggest a significant association between the presence of some of these genotoxic or pro-inflammatory gene sequences and IBDs. In addition, these results illustrate the power and limitations of the HMP database in the detection of possible clinical correlations for individual bacterial genes.

18.
Chem Biol ; 13(3): 287-96, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16638534

RESUMO

Ketoreductase (KR) activities help determine the stereochemistry of the products of modular polyketide synthases (PKSs). For example, domains eryKR(1) and eryKR(2), contained, respectively, in the first and second extension modules of the erythromycin-producing PKS, reduce 3-ketoacyl-thioester intermediates with opposite stereospecificity. Amino acid motifs that correlate with stereochemical outcome have been identified in KRs. We have used saturation mutagenesis of these motifs in eryKR(1) and eryKR(2), and a microplate-based screen of such mutants for activity against (9R, S)-trans-1-decalone, to identify candidate enzymes potentially altered in stereocontrol. Active mutants were reassayed with (2R, S)-2-methyl-3-oxopentanoic acid N-acetylcysteamine thioester, and the alcohol products were analyzed by chiral HPLC. Variant enzymes were found with either altered substrate selectivity for the (2R) or (2S) substrate or altered stereospecificity of reduction, or both, further highlighting the importance of these motifs in stereochemical control.


Assuntos
Mutagênese , Oxirredutases/metabolismo , Policetídeo Sintases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cromatografia Líquida de Alta Pressão , Conformação Molecular , Dados de Sequência Molecular , Oxirredução , Oxirredutases/química , Policetídeo Sintases/química , Estrutura Terciária de Proteína , Estereoisomerismo , Especificidade por Substrato
19.
Chem Biol ; 13(3): 277-85, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16638533

RESUMO

The ketoreductase (KR) domains eryKR(1) and eryKR(2) from the erythromycin-producing polyketide synthase (PKS) reduce 3-ketoacyl-thioester intermediates with opposite stereospecificity. Modeling of eryKR(1) and eryKR(2) showed that conserved amino acids previously correlated with production of alternative alcohol configurations lie in the active site. eryKR(1) domains mutated at these positions showed an altered stereochemical outcome in reduction of (2R, S)-2-methyl-3-oxopentanoic acid N-acetylcysteamine thioester. The wild-type eryKR(1) domain exclusively gave the (2S, 3R)-3-hydroxy-2-methylpentanoic acid N-acetylcysteamine thioester, while the double mutant (F141W, P144G) gave only the (2S, 3S) isomer, a switch of the alcohol stereochemistry. Mutation of the eryKR(2) domain, in contrast, greatly increased the proportion of the wild-type (2R, 3S)-alcohol product. These data confirm the role of key residues in stereocontrol and suggest an additional way to make rational alterations in polyketide antibiotic structure.


Assuntos
Mutagênese Sítio-Dirigida , Oxirredutases/metabolismo , Policetídeo Sintases/metabolismo , Sequência de Aminoácidos , Catálise , Conformação Molecular , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA