Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 16(13): 3180-3186, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32016280

RESUMO

Following previous work evidencing that short poly-propylene glycol (PPG) chains incorporated into crude SBR/silica nanocomposites act as filler-network softeners without changing their structure, we propose in the present report to examine more operative cross-linked materials. We first evidence that the adsorption of PPG onto silica deactivates progressively the particle's catalytic effect on vulcanization, without perturbing however the cross-link density distribution that we investigate through multiple-quantum NMR. In addition, electron microscopy confirms that the silica structure is conserved after vulcanization and that it does not depend on the PPG content either. Composites containing various amounts of PPG can thus be seen as structurally identical, both from a matrix and filler point of view - which is confirmed by small and medium amplitude oscillation shear rheology showing strikingly identical viscoelastic properties. The PPG signature only appears above 100% in tensile deformation where it is observed to soften dramatically the filler network. Our discovery makes it consequently possible to decorrelate the mechanical behavior of reinforced rubbers under normal conditions of use and urgent needs of energy dissipation.

2.
Soft Matter ; 15(15): 3122-3132, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30806422

RESUMO

A new formulation of the widely used nanocomposites based on SBR (ca. 250 kg mol-1) and fractal silica fillers is proposed by substituting the usual covering and coupling agents with short chains (4 kg mol-1) of polypropylene glycol (PPG). We study in a systematic way the structural evolution and the changes in the linear and non-linear mechanical properties of two series of samples varying: (i) the silica volume fraction (Φsi = 0, 5, 10 and 15 vol%) in PPG-free samples and (ii) the amount of PPG for a given silica content Φsi = 15 vol%. While the first series is used as a reference, showing expected trends (e.g. the enhancement of the plateau modulus), the second series reveals in contrast, a surprising PPG insensitivity, both in terms of the filler structure (investigated by means of SAXS, SEM and TEM) and properties "at rest" (linear rheology). However, increasing the strain amplitude (both in shear and tensile tests) discloses the great effect of the oligomers, opening possibly the way to a fruitful decorrelation between the low and high deformation performances of tires. Although this study is limited to the investigation of uncrosslinked materials, it will be extended to more operative industrial formulations in due course.

3.
Faraday Discuss ; 186: 295-309, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26782937

RESUMO

Polymer nanocomposites are used widely, mainly for the industrial application of car tyres. The rheological behavior of such nanocomposites depends in a crucial way on the dispersion of the hard filler particles - typically silica nanoparticles embedded in a soft polymer matrix. It is thus important to assess the filler structure, which may be quite difficult for aggregates of nanoparticles of high polydispersity, and with strong interactions at high loading. This has been achieved recently using a coupled TEM/SAXS structural model describing the filler microstructure of simplified industrial nanocomposites with grafted or ungrafted silica of high structural disorder. Here, we present an original method capable of reducing inter-aggregate interactions by swelling of nanocomposites, diluting the filler to low-volume fractions. Note that this is impossible to reach by solid mixing due to the large differences in viscoelasticity between the composite and the pure polymer. By combining matrix crosslinking, swelling in a good monomer solvent, and post-polymerization of these monomers, it is shown that it is possible to separate the filler into small aggregates. The latter have then been characterized by electron microscopy and small-angle X-ray scattering, confirming the conclusions of the above mentioned TEM-SAXS structural model applied directly to the highly loaded cases.

4.
Phys Chem Chem Phys ; 17(3): 1660-6, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25436476

RESUMO

The existence of two independent filler-dependent high-temperature Maxwell-Wagner-Sillars (MWS) dielectric processes is demonstrated and characterized in detail in silica-filled styrene-butadiene (SB) industrial nanocomposites of simplified composition using Broadband Dielectric Spectroscopy (BDS). The uncrosslinked samples are made with 140 kg mol(-1) SB-chains, half of which carry a single graftable end-function (50% D3), and Zeosil 1165 MP silica incorporated by solid-phase mixing. While one high-temperature process is known to exist in other systems, the dielectric properties of a new silica-related process - strength, relaxation time, and activation energy - have been evidenced and described as a function of silica volume fraction and temperature. In particular, it is shown that its strength follows a percolation behavior as observed with the ionic conductivity and rheology. Moreover, activation energies show the role of polymer layers separating aggregates even when they are percolated. Apart from simultaneous characterization over a broad frequency range up to local polymer and silanol dynamics, it is believed that such high-temperature BDS-measurements can thus be used to detect reorganizations in structurally-complex silica nanocomposites. Moreover, they should contribute to a better identification of dynamical processes via the described sensitivity to structure in such systems.

5.
Soft Matter ; 10(35): 6686-95, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25060535

RESUMO

The formation of aggregates in simplified industrial styrene-butadiene nanocomposites with silica filler has been studied using a recent model based on a combination of electron microscopy, computer simulations, and small-angle X-ray scattering. The influence of the chain mass (40 to 280 kg mol(-1), PI < 1.1), which sets the linear rheology of the samples, was investigated for a low (9.5 vol%) and high (19 vol%) silica volume fraction. 50% of the chains bear a single graftable end-group, and it is shown that the (chain-mass dependent) grafting density is the structure-determining parameter. A model unifying all available data on this system is proposed and used to determine a critical aggregate grafting density. The latter is found to be closely related to the mushroom-to-brush transition of the grafted layer. To our best knowledge, this is the first comprehensive evidence for the control of the complex nanoparticle aggregate structure in nanocomposites of industrial relevance by the physical parameters of the grafted layer.

6.
ACS Macro Lett ; : 234-239, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301141

RESUMO

The present work offers a comprehensive description of the acid-induced gelation of carboxymethylcellulose (CMC), a water-soluble derivative of cellulose broadly used in numerous applications ranging from food packaging to biomedical engineering. Linear viscoelastic properties measured at various pH and CMC contents allow us to build a sol-gel phase diagram and show that CMC gels exhibit broad power-law viscoelastic spectra that can be rescaled onto a master curve following a time-composition superposition principle. These results demonstrate the microstructural self-similarity of CMC gels and inspire a mean-field model based on hydrophobic interchain association that accounts for the sol-gel boundary over the entire range of CMC content under study. Neutron scattering experiments further confirm this picture and suggest that CMC gels comprise a fibrous network cross-linked by aggregates. Finally, low-field NMR measurements offer an original signature of acid-induced gelation from a solvent perspective. Altogether, these results open avenues for the precise manipulation and control of CMC-based hydrogels.

7.
ACS Nano ; 17(17): 17394-17404, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578990

RESUMO

We have investigated the heating mechanism in industrially relevant, multi-block copolymers filled with Fe nanoparticles and subjected to an oscillatory magnetic field that enables polymer healing in a contactless manner. While this procedure aims to extend the lifetime of a wide range of thermoplastic polymers, repeated or prolonged stimulus healing is likely to modify their structure, mechanics, and ability to heat, which must therefore be characterized in depth. In particular, our work sheds light on the physical origin of the secondary heating mechanism detected in soft systems subjected to magnetic hyperthermia and triggered by copolymer chain dissociation. In spite of earlier observations, the origin of this additional heating remained unclear. By using both static and dynamic X-ray scattering methods (small-angle X-ray scattering and X-ray photon correlation spectroscopy, respectively), we demonstrate that beyond magnetic hysteresis losses, the enormous drop of viscosity at the polymer melting temperature enables motion of nanoparticles that generates additional heat through friction. Additionally, we show that applying induction heating for a few minutes is found to magnetize the nanoparticles, which causes them to align in dipolar chains and leads to nonmonotonic translational dynamics. By extrapolating these observations to rotational dynamics and the corresponding amount of heat generated through friction, we not only clarify the origin of the secondary heating mechanism but also rationalize the presence of a possible temperature maximum observed during induction heating.

8.
Macromolecules ; 51(8): 2872-2886, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29910512

RESUMO

The equilibrium mechanical properties of a cross-linked gel of telechelic star polymers are studied by rheology and Brownian dynamics simulations. The Brownian dynamics model consists of cores to which Rouse arms are attached. Forces between the cores are obtained from a potential of mean force model developed by Likos and co-workers. Both experimentally and in the simulations, networks were created by attaching sticker groups to the ends of the arms of the polymers, which were next allowed to form bonds among them in a one to one fashion. Simulations were sped up by solving the Rouse dynamics exactly. Moreover, the Rouse model was extended to allow for different frictions on different beads. In order to describe the rheology of the non-cross-linked polymers, it had to be assumed that bead frictions increase with increasing bead number along the arms. This friction model could be transferred to describe the rheology of the network without any adjustments other than an overall increase of the frictions due to the formation of bonds. The slowing down at intermediate times of the network rheology compared to that of the non-cross-linked polymers is well described by the model. The percentage of stickers involved in forming inter-star bonds in the system was determined to be 25%, both from simulations and from an application of the Green-Tobolsky relation to the experimental plateau value of the shear relaxation modulus. Simulations with increasing cross-link percentages revealed that on approaching the gel transition the shear relaxation modulus develops an algebraic tail, which gets frozen at a percentage of maximum cross-linking of about 11%.

9.
Nat Commun ; 7: 11368, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109062

RESUMO

It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ∼31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which 'tie' NPs together into a network.


Assuntos
Nanocompostos/química , Polímeros/química , Fricção , Nanopartículas/química , Polímeros/síntese química , Reologia , Dióxido de Silício/química , Temperatura
10.
ACS Macro Lett ; 3(5): 448-452, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590780

RESUMO

The structure of styrene-butadiene (SB) nanocomposites filled with industrial silica has been analyzed using electron microscopy and small-angle X-ray scattering. The grafting density per unit silica surface ρD3 was varied by adding graftable SB molecules. By comparing the filler structures at fixed ρD3 (so-called "twins"), a surprising match of the microstructures was evidenced. Mechanical measurements show that ρD3 also sets the modulus: it is then possible to tune the terminal relaxation time of nanocomposites via the chain length while leaving the modulus and structure unchanged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA