RESUMO
Next-generation sequencing technologies allowed sequencing of thousands of genomes. However, there are genomic regions that remain difficult to characterize, including telomeres, centromeres, and other low-complexity regions, as well as transposable elements and endogenous viruses. Human herpesvirus 6A and 6B (HHV-6A and HHV-6B) are closely related viruses that infect most humans and can integrate their genomes into the telomeres of infected cells. Integration also occurs in germ cells, meaning that the virus can be inherited and result in individuals harboring the virus in every cell of their body. The integrated virus can reactivate and cause disease in humans. While it is well established that the virus resides in the telomere region, the integration locus is poorly defined due to the low sequence complexity (TTAGGG)n of telomeres that cannot be easily resolved through sequencing. We therefore employed genome imaging of the integrated HHV-6A and HHV-6B genomes using whole-genome optical site mapping technology. Using this technology, we identified which chromosome arm harbors the virus genome and obtained a high-resolution map of the integration loci of multiple patients. Surprisingly, this revealed long telomere sequences at the virus-subtelomere junction that were previously missed using PCR-based approaches. Contrary to what was previously thought, our technique revealed that the telomere lengths of chromosomes harboring the integrated virus genome were comparable to the other chromosomes. Taken together, our data shed light on the genetic structure of the HHV-6A and HHV-6B integration locus, demonstrating the utility of optical mapping for the analysis of genomic regions that are difficult to sequence.
Assuntos
Herpesvirus Humano 6/fisiologia , Imagem Óptica , Telômero/metabolismo , Cromossomos Humanos/genética , Genoma Viral , Herpesvirus Humano 6/genética , Interações Hospedeiro-Patógeno , Humanos , Homeostase do TelômeroRESUMO
Accounting for 10-20% of breast cancer cases, triple-negative breast cancer (TNBC) is associated with a disproportionate number of breast cancer deaths. One challenge in studying TNBC is its genomic profile: with the exception of TP53 loss, most breast cancer tumors are characterized by a high number of copy number alterations (CNAs), making modeling the disease in whole animals challenging. We computationally analyzed 186 CNA regions previously identified in breast cancer tumors to rank genes within each region by likelihood of acting as a tumor driver. We then used a Drosophila p53-Myc TNBC model to identify 48 genes as functional drivers. To demonstrate the utility of this functional database, we established six 3-hit models; altering candidate genes led to increased aspects of transformation as well as resistance to the chemotherapeutic drug fluorouracil. Our work provides a functional database of CNA-associated TNBC drivers, and a template for an integrated computational/whole-animal approach to identify functional drivers of transformation and drug resistance within CNAs in other tumor types.
Assuntos
Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Neoplasias de Mama Triplo Negativas , Animais , Variações do Número de Cópias de DNA/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Drosophila melanogaster/genética , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação Neoplásica da Expressão Gênica , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Transformação Celular Neoplásica/genéticaRESUMO
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.
Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glutamina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores Enzimáticos/uso terapêutico , MutaçãoRESUMO
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We have previously shown that KEAP1 mutant tumors have increased glutamine consumption to support the metabolic rewiring associated with NRF2 activation. Here, using patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the novel glutamine antagonist DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumor growth by inhibiting glutamine-dependent nucleotide synthesis and promoting anti-tumor CD4 and CD8 T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we discover that DRP-104 reverses T cell exhaustion and enhances the function of CD4 and CD8 T cells culminating in an improved response to anti-PD1 therapy. Our pre-clinical findings provide compelling evidence that DRP-104, currently in phase 1 clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer. Furthermore, we demonstrate that by combining DRP-104 with checkpoint inhibition, we can achieve suppression of tumor intrinsic metabolism and augmentation of anti-tumor T cell responses.