Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Bioorg Med Chem ; 32: 116011, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461145

RESUMO

B13 is an acid ceramidase (ACDase) inhibitor. The two chiral centers of this aromatic amido alcohol lead to four stereoisomers, yet we have little knowledge about its erythro- enantiomers, (1R, 2S) and (1S, 2R). In this paper, for the first time, the synthesis of two erythro- enantiomers is described, and the compounds are evaluated along with two threo- enantiomers, (1R, 2R) and (1S, 2S). The key metabolites and sphingolipid (SL) profile of the full set of B13 stereoisomers in MCF7 breast carcinoma cells are presented. The results demonstrated that the erythro- enantiomers were more effective than the threo- enantiomers on growth inhibition in MCF7 cells, although there were no statistically significant differences within the threo- and erythro- series. Measurement of intracellular levels of the compounds indicated that the erythro- seemed a little more cell permeable than the threo- enantiomers; also, the (1R, 2S) isomer with the same stereo structure as natural ceramide (Cer) could be hydrolyzed and phosphorylated in MCF7 cells. Furthermore, we also observed the formation of C16 homologs from the full set of B13 isomers within the cells, indicating the occurrence of de-acylation and re-acylation of the amino group of the aromatic alcohol. Moreover, the decrease in the Cer/Sph ratio suggests that the growth inhibition from (1R, 2S) isomer is not because of the inhibition of ceramidases. Taken together, (1R, 2S) could be developed as a substitute of natural Cer.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Propanolaminas/farmacologia , Esfingolipídeos/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Propanolaminas/síntese química , Propanolaminas/química , Esfingolipídeos/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Cytokine ; 135: 155219, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738771

RESUMO

The bioactive sphingolipid ceramide affects immune responses although its effect on antigen (Ag) processing and delivery by HLA class II to CD4+T-cells remains unclear. Therefore, we examined the actions of a novel cell-permeable acid ceramidase (AC) inhibitor [(1R,2R) N myristoylamino-(4'-nitrophenyl)-propandiol-1,3] on antigen presentation and inflammatory cytokine production by Ag-presenting cells (APCs) such as B-cells, macrophages, and dendritic cells. We found that AC inhibition in APCs perturbed Ag-processing and presentation via HLA-DR4 (MHC class II) proteins as measured by coculture assay and T-cell production of IL-2. Mass spectral analyses showed that B13 treatment significantly raised levels of four types of ceramides in human B-cells. B13 treatment did not alter Ag internalization and class II protein expression, but significantly inhibited lysosomal cysteinyl cathepsins (B, S and L) and thiol-reductase (GILT), HLA class II Ag-processing, and generation of functional class II-peptide complexes. Ex vivo Ag presentation assays showed that inhibition of AC impaired primary and recall CD4+T-cell responses and cytokine production in response against type II collagen. Further, B13 delayed onset and reduced severity of inflamed joints and cytokine production in the collagen-induced arthritis mouse model in vivo. These findings suggest that inhibition of AC in APCs may dysregulate endolysosomal proteases and HLA class II-associated self-antigen presentation to CD4+T-cells, attenuating inflammatory cytokine production and suppressing host autoimmune responses.


Assuntos
Ceramidase Ácida/imunologia , Apresentação de Antígeno/imunologia , Artrite Experimental/imunologia , Doenças Autoimunes/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Catepsinas/imunologia , Linhagem Celular , Antígeno HLA-DR4/imunologia , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos DBA
3.
Prostate ; 79(8): 896-908, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900312

RESUMO

Numerous genetic alterations have been identified during prostate cancer progression. The influence of environmental factors, particularly the diet, on the acceleration of tumor progression is largely unknown. Expression levels and/or activity of Src kinase are highly elevated in numerous cancers including advanced stages of prostate cancer. In this study, we demonstrate that high-fat diets (HFDs) promoted pathological transformation mediated by the synergy of Src and androgen receptor in vivo. Additionally, a diet high in saturated fat significantly enhanced proliferation of Src-mediated xenograft tumors in comparison with a diet high in unsaturated fat. The saturated fatty acid palmitate, a major constituent in a HFD, significantly upregulated the biosynthesis of palmitoyl-CoA in cancer cells in vitro and in xenograft tumors in vivo. The exogenous palmitate enhanced Src-dependent mitochondrial ß-oxidation. Additionally, it elevated the amount of C16-ceramide and total saturated ceramides, increased the level of Src kinase localized in the cell membrane, and Src-mediated downstream signaling, such as the activation of mitogen-activated protein kinase and focal adhesion kinase. Our results uncover how the metabolism of dietary palmitate cooperates with elevated Src kinase in the acceleration of prostate tumor progression.


Assuntos
Palmitatos/administração & dosagem , Neoplasias da Próstata/etiologia , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Células PC-3 , Palmitatos/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30550872

RESUMO

Acid sphingomyelinase (ASM) is a membrane lipid hydrolase, acting to generate ceramide and regulate cell functions and inflammatory responses.The roles of ASM in mediating T cell functions are postulated whereas its function in regulation of macrophages remains uncertain. The study was performed to explore ASM activity in control of macrophage functions. RAW 264.7 cells were pretreated with desipramine, an ASM inhibitor, prior to LPS challenge in vitro. LPS initiated ASM activity in RAW 264.7 cells. Conversely, inhibition of ASM activity by desipramine diminished LPS induced ASM activities and TNF production of RAW 264.7 cells. The DSS colitis in mice was induced, and desipramine was administered to the mice two days post induction of colitis. Murine colitis was characterized by elevation of ASM activities in colon tissues. Desipramine administration overrode ASM activities in colon, and ameliorated DSS-induced colitis evidenced with the reduced disease activities and the decreased cytokine levels. Together, our data show a crucial role of ASM activity in regulation of macrophage functions and responses, and suggest that ASM represents a novel therapeutic approach for the management of immune diseases.


Assuntos
Colite/induzido quimicamente , Colite/enzimologia , Sulfato de Dextrana/farmacologia , Inibidores Enzimáticos/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Colite/tratamento farmacológico , Colite/imunologia , Colo/efeitos dos fármacos , Colo/imunologia , Citocinas/metabolismo , Inibidores Enzimáticos/uso terapêutico , Feminino , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7
5.
Bioorg Med Chem ; 26(23-24): 6067-6075, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30448190

RESUMO

The function of acid ceramidase (ACDase), whose congenital deficiency leads to Farber disease, has been recognized to be vital to tumor cell biology, and inhibition of its activity may be beneficial in cancer therapy. Therefore, manipulation of the activity of this enzyme may have significant effect, especially on cancer cells. LCL521, Di-DMG-B13, is a lysosomotropic inhibitor of ACDase. Here we define complexities in the actions of LCL521 on ACDase. Systematic studies in MCF7 cells showed dose and time divergent action of LCL521 on ACDase protein expression and sphingolipid levels. Low dose of LCL521 (1 µM) effectively inhibited ACDase in cells, but the effects were transient. A higher dose of LCL521 (10 µM) caused a profound decrease of sphingosine and increase of ceramide, but additionally affected the processing and regeneration of the ACDase protein, with biphasic and reversible effects on the expression of ACDase, which paralleled the long term changes of cellular sphingosine and ceramide. Finally, the higher concentrations of LCL521 also inhibited Dihydroceramide desaturase (DES-1). In summary, LCL521 exhibits significant effects on ACDase in a dose and time dependent manner, but dose range and treatment time need to be paid attention to specify its future exploration on ACDase targeted cancer treatment.


Assuntos
Acetatos/farmacologia , Ceramidase Ácida/antagonistas & inibidores , Aminas/farmacologia , Inibidores Enzimáticos/farmacologia , Esfingolipídeos/antagonistas & inibidores , Ceramidase Ácida/metabolismo , Relação Dose-Resposta a Droga , Humanos , Células MCF-7 , Estrutura Molecular , Esfingolipídeos/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo , Células Tumorais Cultivadas
6.
Artigo em Inglês | MEDLINE | ID: mdl-28377281

RESUMO

Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite which has been implicated in many diseases including cancer and inflammatory diseases. Recently, sphingosine kinase 1 (SK1), one of the isozymes which generates S1P, has been implicated in the development and progression of inflammatory bowel disease (IBD). Based on our previous work, we set out to determine the efficacy of a novel SK1 selective inhibitor, LCL351, in a murine model of IBD. LCL351 selectively inhibits SK1 both in vitro and in cells. LCL351, which accumulates in relevant tissues such as colon, did not have any adverse side effects in vivo. In mice challenged with dextran sodium sulfate (DSS), a murine model for IBD, LCL351 treatment protected from blood loss and splenomegaly. Additionally, LCL351 treatment reduced the expression of pro-inflammatory markers, and reduced neutrophil infiltration in colon tissue. Our results suggest inflammation associated with IBD can be targeted pharmacologically through the inhibition and degradation of SK1. Furthermore, our data also identifies desirable properties of SK1 inhibitors.


Assuntos
Colite/tratamento farmacológico , Colite/imunologia , Sulfato de Dextrana/efeitos adversos , Guanidinas/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Esfingosina/farmacologia , Células A549 , Quimiocina CXCL1/genética , Quimiocina CXCL2/genética , Colite/induzido quimicamente , Colite/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Guanidinas/uso terapêutico , Humanos , Esfingosina/uso terapêutico , Fator de Necrose Tumoral alfa/genética
7.
J Biol Chem ; 290(21): 13157-67, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25839235

RESUMO

A family of six ceramide synthases with distinct but overlapping substrate specificities is responsible for generation of ceramides with acyl chains ranging from ∼14-26 carbons. Ceramide synthase 6 (CerS6) preferentially generates C14- and C16-ceramides, and we have previously shown that down-regulation of this enzyme decreases apoptotic susceptibility. In this study, we further evaluated how increased CerS6 expression impacts sphingolipid composition and metabolism. Overexpression of CerS6 in HT29 colon cancer cells resulted in increased apoptotic susceptibility and preferential generation of C16-ceramide, which occurred at the expense of very long chain, saturated ceramides. These changes were also reflected in sphingomyelin composition. HT-CerS6 cells had increased intracellular levels of sphingosine, which is generated by ceramidases upon hydrolysis of ceramide. qRT-PCR analysis revealed that only expression of acid ceramidase (ASAH1) was increased. The increase in acid ceramidase was confirmed by expression and activity analyses. Pharmacological inhibition of JNK (SP600125) or curcumin reduced transcriptional up-regulation of acid ceramidase. Using an acid ceramidase promoter driven luciferase reporter plasmid, we demonstrated that CerS1 has no effect on transcriptional activation of acid ceramidase and that CerS2 slightly but significantly decreased the luciferase signal. Similar to CerS6, overexpression of CerS3-5 resulted in an ∼2-fold increase in luciferase reporter gene activity. Exogenous ceramide failed to induce reporter activity, while a CerS inhibitor and a catalytically inactive mutant of CerS6 failed to reduce it. Taken together, these results suggest that increased expression of CerS6 can mediate transcriptional activation of acid ceramidase in a JNK-dependent manner that is independent of CerS6 activity.


Assuntos
Ceramidase Ácida/metabolismo , Apoptose/efeitos dos fármacos , Ceramidas/farmacologia , Neoplasias do Colo/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Ceramidase Ácida/genética , Antimetabólitos Antineoplásicos/farmacologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Citometria de Fluxo , Fluoruracila/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas de Membrana/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/genética , Células Tumorais Cultivadas
8.
J Immunol ; 193(7): 3366-77, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172498

RESUMO

CD39 (ENTPD1) is expressed by subsets of pathogenic human CD4(+) T cells, such as Th17 cells. These Th17 cells are considered important in intestinal inflammation, such as seen in Crohn's disease (CD). Recently, CD161 (NKR-P1A) was shown to be a phenotypic marker of human Th17 cells. In this study, we report that coexpression of CD161 and CD39 not only identifies these cells but also promotes Th17 generation. We note that human CD4(+)CD39(+)CD161(+) T cells can be induced under stimulatory conditions that promote Th17 in vitro. Furthermore, CD4(+)CD39(+)CD161(+) cells purified from blood and intestinal tissues, from both healthy controls and patients with CD, are of the Th17 phenotype and exhibit proinflammatory functions. CD39 is coexpressed with CD161, and this association augments acid sphingomyelinase (ASM) activity upon stimulation of CD4(+) T cells. These pathways regulate mammalian target of rapamycin and STAT3 signaling to drive the Th17 phenotype. Inhibition of ASM activity by pharmacological blockers or knockdown of ASM abrogates STAT3 signaling, thereby limiting IL-17 production in CD4(+) T cells obtained from both controls and patients with active CD. Increased levels of CD39(+)CD161(+) CD4(+) T cells in blood or lamina propria are noted in patients with CD, and levels directly correlate with clinical disease activity. Hence, coexpression of CD39 and CD161 by CD4(+) T cells might serve as a biomarker to monitor Th17 responsiveness. Collectively, CD39 and CD161 modulate human Th17 responses in CD through alterations in purinergic nucleotide-mediated responses and ASM catalytic bioactivity, respectively.


Assuntos
Antígenos CD/imunologia , Apirase/imunologia , Doença de Crohn/imunologia , Mucosa/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Células Th17/imunologia , Adulto , Idoso , Biomarcadores , Doença de Crohn/patologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-17/imunologia , Masculino , Pessoa de Meia-Idade , Mucosa/patologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Esfingomielina Fosfodiesterase/imunologia , Células Th17/patologia
10.
Cell Immunol ; 297(1): 10-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26058806

RESUMO

MAGEA10, a cancer/testis antigens expressed in tumors but not in normal tissues with the exception of testis and placenta, represents an attractive target for cancer immunotherapy. However, suppressive cytoenvironment and requirement of specific HLA-alleles presentation frequently led to immunotherapy failure. In this study MAGEA10 was scarcely expressed in cancer patients, but enhanced by viili polysaccharides, which indicates a possibility of increasing epitopes presentation. Furthermore the correlation of gene expression with methylation, indicated by R(2) value for MAGEA10 that was 3 times higher than the value for other MAGE genes tested, provides an explanation of why MAGEA10 was highly inhibited, this is also seen by Kaplan-Meier analysis because MAGEA10 did not change the patients' lifespan. By using Molecular-Docking method, 3 MAGEA10 peptides were found binding to the groove position of HLA-A(∗)0210 as same as MAGEA4 peptide co-crystallized with HLA-A(∗)0210, which indicates that they could be promising for HLA-A(∗)0201 presentation in immunotherapy.


Assuntos
Antígenos de Neoplasias/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Alelos , Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/genética , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Metilação de DNA/genética , Epitopos de Linfócito T/biossíntese , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Antígeno HLA-A2/genética , Humanos , Imunoterapia/métodos , Neoplasias Pulmonares/imunologia , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Ligação Proteica , Linfócitos T Citotóxicos/imunologia
11.
Purinergic Signal ; 11(3): 317-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26059452

RESUMO

CD39/ENTPD1 is a prototypic member of the ectonucleoside triphosphate diphosphohydrolase (ENTPDase) family on cell surface. CD39 has been reported to be a marker of regulatory immune cells and catalyzes extracellular hydrolysis of nucleotides to generate AMP and, in tandem with CD73, adenosine. We have recently found in addition that co-expression of CD39 and CD161 by human CD4(+) T cells may become a biomarker of human Th17 cells. CD39 and CD161 have direct interactions that are further linked with acid sphingomyelinase (ASM). Upon activation of CD39 and CD161, the molecular interactions boost ASM bio-activity, which generates cellular ceramide to further mediate downstream signals inclusive of STAT3 and mTOR. We suggest modulation of human Th17 responsiveness by CD39 and CD161 and describe novel molecular mechanisms integrating elements of both extracellular nucleotide and sphingolipid homeostasis that are pivotal in the control of human Th17 cells and which could have therapeutic potential.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/genética , Antígenos CD/fisiologia , Apirase/genética , Apirase/fisiologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/fisiologia , Células Th17/enzimologia , 5'-Nucleotidase/fisiologia , Animais , Humanos
13.
Gastroenterology ; 155(2): 579-580, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30064723
14.
BMC Cancer ; 14: 24, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24422988

RESUMO

BACKGROUND: Ceramide is a bioeffector that mediates various cellular processes, including apoptosis. However, the mechanism underlying ceramide function in apoptosis is apparently cell type-dependent and is not well-understood. We aimed at identifying molecular targets of ceramide in metastatic human colon and breast cancer cells, and determining the efficacy of ceramide analog in suppression of colon and breast cancer metastasis. METHODS: The activity of and mechanism underlying ceramide as a cytotoxic agent, and as a sensitizer for Fas-mediated apoptosis was analyzed in human cell lines established from primary or metastatic colon and breast cancers. The efficacy of ceramide analog LCL85 in suppression of metastasis was examined in preclinical mouse tumor models. RESULTS: Exposure of human colon carcinoma cells to ceramide analog LCL85 results in apoptosis in a dose-dependent manner. Interestingly, a sublethal dose of LCL85 increased C16 ceramide content and overcame tumor cell resistance to Fas-mediated apoptosis. Subsequently, treatment of tumor cells with exogenous C16 ceramide resulted in increased tumor cell sensitivity to Fas-mediated apoptosis. LCL85 resembles Smac mimetic BV6 in sensitization of colon carcinoma cells to Fas-mediated apoptosis by inducing proteasomal degradation of cIAP1 and xIAP proteins. LCL85 also decreased xIAP1 and cIAP1 protein levels and sensitized metastatic human breast cancer cells to Fas-mediated apoptosis. Silencing xIAP and cIAP1 with specific siRNAs significantly increased the metastatic human colon carcinoma cell sensitivity to Fas-mediated apoptosis, suggesting that IAP proteins mediate apoptosis resistance in metastatic human colon carcinoma cells and ceramide induces IAP protein degradation to sensitize the tumor cells to apoptosis induction. Consistent with its apoptosis sensitization activity, subtoxic doses of LCL85 suppressed colon carcinoma cell metastatic potential in an experimental lung metastasis mouse model, as well as breast cancer growth and spontaneous lung metastasis in an orthotopic breast cancer mouse model. CONCLUSION: We have identified xIAP and cIAP1 as molecular targets of ceramide and determined that ceramide analog LCL85 is an effective sensitizer in overcoming resistance of human cell lines established from metastatic colon and breast cancers to apoptosis induction to suppress metastasis in vivo.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ceramidas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Proteínas Inibidoras de Apoptose/metabolismo , Propanolaminas/farmacologia , Compostos de Piridínio/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/secundário , Progressão da Doença , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transfecção , Ubiquitina-Proteína Ligases , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor fas/metabolismo
15.
Bioorg Med Chem ; 22(24): 6933-44, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25456083

RESUMO

Acid ceramidase (ACDase) is being recognized as a therapeutic target for cancer. B13 represents a moderate inhibitor of ACDase. The present study concentrates on the lysosomal targeting of B13 via its N,N-dimethylglycine (DMG) esters (DMG-B13 prodrugs). Novel analogs, the isomeric mono-DMG-B13, LCL522 (3-O-DMG-B13·HCl) and LCL596 (1-O-DMG-B13·HCl) and di-DMG-B13, LCL521 (1,3-O, O-DMG-B13·2HCl) conjugates, were designed and synthesized through N,N-dimethyl glycine (DMG) esterification of the hydroxyl groups of B13. In MCF7 cells, DMG-B13 prodrugs were efficiently metabolized to B13. The early inhibitory effect of DMG-B13 prodrugs on cellular ceramidases was ACDase specific by their lysosomal targeting. The corresponding dramatic decrease of cellular Sph (80-97% Control/1h) by DMG-B13 prodrugs was mainly from the inhibition of the lysosomal ACDase.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Amidas/química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Nitrobenzenos/química , Pró-Fármacos/síntese química , Propanolaminas/química , Ceramidase Ácida/genética , Ceramidase Ácida/metabolismo , Amidas/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ésteres , Células HeLa , Humanos , Lisossomos/enzimologia , Células MCF-7 , Nitrobenzenos/metabolismo , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Propanolaminas/metabolismo , Ligação Proteica
16.
Eur J Immunol ; 42(11): 3062-72, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22965858

RESUMO

Purinergic signaling and associated ectonucleotidases, such as CD39 and CD73, have been implicated in the pathogenesis of inflammatory bowel disease (IBD). CD39 is known to be a Treg memory cell marker, and here we determine the phenotype and function of CD73(+) CD4(+) T lymphocytes in patients with IBD. We describe elevated levels of CD73(+) CD4(+) T cells in the peripheral blood and intestinal lamina propria of patients with active IBD. The functional phenotype of these CD73(+) CD4(+) T cells was further determined by gene expression, ecto-enzymatic activity, and suppressive assays. Increased numbers of CD73(+) CD4(+) T cells in the periphery and lamina propria were noted during active inflammation, which returned to baseline levels following anti-TNF treatment. Peripheral CD73(+) CD4(+) T cells predominantly expressed CD45RO, and were enriched with IL-17A(+) cells. The CD73(+) CD4(+) cell population expressed higher levels of RORC, IL-17A, and TNF, and lower levels of FOXP3 and/or CD25, than CD73(-) CD4(+) T cells. Expression of CD73 by peripheral CD4(+) T cells was increased by TNF, and decreased by an anti-TNF monoclonal antibody (infliximab). In vitro, these peripheral CD73(+) CD4(+) T cells did not suppress proliferation of CD25(-) effector cells, and expressed higher levels of pro-inflammatory markers. We conclude that the CD73(+) CD4(+) T-cell population in patients with active IBD are enriched with cells with a T-helper type 17 phenotype, and could be used to monitor disease activity during treatment.


Assuntos
5'-Nucleotidase/imunologia , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa/imunologia , Células Th17/imunologia , 5'-Nucleotidase/sangue , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Citometria de Fluxo , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/imunologia , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Humanos , Imunofenotipagem , Doenças Inflamatórias Intestinais/sangue , Infliximab , Leucócitos Mononucleares/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia
17.
Mol Med ; 17(7-8): 646-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21424108

RESUMO

Interleukin (IL)-12 and IL-23 both share the p40 subunit and are key cytokines in the pathogenesis of Crohn's disease. Previously, we have developed and identified three mouse p40 peptide-based and virus-like particle vaccines. Here, we evaluated the effects and immune mechanisms of the optimal vaccine in downregulating intestinal inflammation in murine acute and chronic colitis, induced by intrarectal administrations of trinitrobenzene sulfonic acid (TNBS). Mice were injected subcutaneously with vaccine, vaccine carrier or saline three times, and then intrarectally administered TNBS weekly for 2 wks (acute colitis) or 7 wks (chronic colitis). The severity of colitis was evaluated by body weight, histology and collagen and cytokine levels in colon tissue. Th1 and Th17 cells in mesenteric lymph nodes (MLN) were determined. Our results showed the vaccine induced high level and long-lasting specific IgG antibodies to p40, IL-12 and IL-23. After administrations of TNBS, vaccinated mice had significantly less body weight loss and a significant decrease of inflammatory scores, collagen deposition and expression of p40, IL-12, IL-23, IL-17, TNF, iNOS and Bcl-2 in colon tissues, compared with carrier and saline groups. Moreover, vaccinated mice exhibited a trend to lower percentages of Th1 cells in acute colitis and of Th17 cells in chronic colitis in MLN than in controls. In summary, administration of the vaccine induced specific antibodies to IL-12 and IL-23, which was associated with improvement of intestinal inflammation and fibrosis. This suggests that the vaccine may provide a potential approach for the long-term treatment of Crohn's disease.


Assuntos
Colite/imunologia , Colo/imunologia , Subunidade p40 da Interleucina-12/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Doença Aguda , Animais , Doença Crônica , Colite/induzido quimicamente , Colite/prevenção & controle , Colágeno/imunologia , Colágeno/metabolismo , Colo/metabolismo , Colo/patologia , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Fibrose/imunologia , Fibrose/prevenção & controle , Expressão Gênica , Imunoglobulina G/imunologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/metabolismo , Linfonodos/imunologia , Linfonodos/patologia , Mesentério/imunologia , Mesentério/patologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Ácido Trinitrobenzenossulfônico , Vacinas de Subunidades Antigênicas/administração & dosagem , Redução de Peso/imunologia
18.
Biochem Biophys Res Commun ; 409(3): 372-7, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21545791

RESUMO

Two anticancer agents, LCL85 and photodynamic therapy (PDT) were combined to test whether the combination PDT/LCL85 evokes changes in the sphingolipid (SL) profile and promotes cell death. Treatment of SCCVII mouse squamous carcinoma cells using the silicone phthalocyanine Pc 4 for PDT induced increases in the prodeath global ceramides/dihydroceramides (DHceramides), and no changes in the prosurvival sphingosine-1-phosphate (S1P). In contrast, after LCL85, the levels of most ceramides and DHceramides were reduced, whereas the levels of S1P were increased. After PDT/LCL85 the levels of global ceramides and DHceramides, and of S1P, were restored to resting levels. PDT/LCL85 also enhanced the levels of C18-, C20-, and C20:1-ceramide, and C18-DHceramide. Treatment with PDT, with or without LCL85, led to substantial reductions in sphingosine levels. PDT/LCL85 induced enhanced autophagy and caspase-3 activation. None of the treatments affected short-term viability of cells. In contrast, long-term clonogenic survival was reduced not only after PDT or LCL85, but even more after PDT/LCL85. Overall, our data show that short-term exposure to PDT/LCL85 led to distinct signature effects on the SL profile, enhanced autophagy, and caspase-3 activation without cell death. Long-term exposure to PDT/LCL85 enhanced overall cell killing, supporting translational potential of PDT/LCL85.


Assuntos
Antineoplásicos/uso terapêutico , Autofagia , Carcinoma de Células Escamosas/tratamento farmacológico , Caspase 3/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Indóis/uso terapêutico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Propanolaminas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Esfingolipídeos/metabolismo , Animais , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Ceramidas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
19.
Gastroenterology ; 137(3): 965-75, 975.e1-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19450596

RESUMO

BACKGROUND & AIMS: NHE3 is a target of inhibition by proinflammatory cytokines and pathogenic bacteria, an event contributing to diarrhea in infectious and idiopathic colitis. In mice, NHE3 deficiency leads to mild diarrhea, increased intestinal expression of interferon (IFN)-gamma, and distal colitis, suggesting its role in epithelial barrier homeostasis. Our aim was to investigate the role of NHE3 in maintaining mucosal integrity. METHODS: Control or dextran sulfate sodium (DSS)-treated, 6- to 8-week-old wild-type (WT) and NHE3(-/-) mice were used for the experiments. Small intestines were dissected for further analysis. RESULTS: NHE3(-/-) mice have elevated numbers of CD8alpha(+) T and natural killer cells in the intraepithelial lymphocytes and lamina propria lymphocytes compartments, representing the source of IFN-gamma. NHE3(-/-) mice display alterations in epithelial gene and protein expression patterns that predispose them to a high susceptibility to DSS, with accelerated mortality resulting from intestinal bleeding, hypovolemic shock, and sepsis, even at a very low DSS concentration. Microarray analysis and intestinal hemorrhage indicate that NHE3 deficiency predisposes mice to DSS-induced small intestinal injury, a segment never reported as affected by DSS, and demonstrate major differences in the colonic response to DSS challenge in WT and NHE3(-/-) mice. In NHE3(-/-) mice, broad-spectrum oral antibiotics or anti-asialo GM1 antibodies reduce the expression of IFN-gamma and iNOS to basal levels and delay but do not prevent severe mortality in response to DSS treatment. CONCLUSIONS: These results suggest that NHE3 participates in mucosal responses to epithelial damage, acting as a modifier gene determining the extent of the gut inflammatory responses in the face of intestinal injury.


Assuntos
Sulfato de Dextrana/toxicidade , Homeostase , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Contagem de Células Sanguíneas , Colo/metabolismo , Regulação para Baixo , Endotelina-1/metabolismo , Gangliosídeo G(M1)/metabolismo , Hemorragia Gastrointestinal/induzido quimicamente , Interferon gama/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
20.
J Pharmacol Exp Ther ; 333(3): 717-25, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20237071

RESUMO

AMP-activated protein kinase (AMPK) is an important cellular energy sensor that is responsible for maintaining systemic and cellular energy balance. Its role in intestinal inflammation remains unclear. Recent studies indicate that AMPK activation initiated by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) participates in modulating inflammatory responses. Inflammatory bowel disease (IBD) has been characterized by sustained intestinal mucosa inflammation, caused mainly by excessive macrophage activation and T helper type 1 (Th1) and Th17 immune responses. Thus, we sought to determine the effect of AICAR on inflammatory responses of murine models of IBD. Mice with acute or chronic colitis induced by dextran sulfate sodium (DSS) were treated with or without AICAR. Body weight and colon inflammation were evaluated, and production of proinflammatory cytokines in colon tissues was determined. Nuclear factor kappaB (NF-kappaB) activation in colon tissues was assayed, and Th1 and Th17 cell responses were also evaluated. By inducing AMPK activation, AICAR had a therapeutic effect in ameliorating acute and chronic DSS-induced murine colitis as shown by reduced body weight, loss and significant attenuation in clinical symptoms, and histological inflammation. Moreover, AICAR treatment inhibited NF-kappaB activation in macrophages, reduced levels of Th1- and Th17-type cytokines in colon tissues, and down-regulated Th1 and Th17 cell responses during the progress of acute and chronic experimental colitis. AICAR acts as a central inhibitor in immune responses of experimental colitis. Our data show that AICAR-initiated AMPK activation may represent a promising alternative to our current approaches to suppress intestinal inflammation in IBD.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Anti-Inflamatórios não Esteroides , Colite/prevenção & controle , Sulfato de Dextrana , Hipoglicemiantes/farmacologia , Ribonucleotídeos/farmacologia , Doença Aguda , Aminoimidazol Carboxamida/farmacologia , Animais , Western Blotting , Doença Crônica , Colite/induzido quimicamente , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunossupressores/farmacologia , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th1/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA