Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Metab Eng ; 84: 117-127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38901555

RESUMO

Effective utilization of glucose, xylose, and acetate, common carbon sources in lignocellulose hydrolysate, can boost biomanufacturing economics. However, carbon leaks into biomass biosynthesis pathways instead of the intended target product remain to be optimized. This study aimed to enhance α-carotene production by optimizing glucose, xylose, and acetate utilization in a high-efficiency Corynebacterium glutamicum cell factory. Heterologous xylose pathway expression in C. glutamicum resulted in strain m4, exhibiting a two-fold increase in α-carotene production from xylose compared to glucose. Xylose utilization was found to boost the biosynthesis of pyruvate and acetyl-CoA, essential precursors for carotenoid biosynthesis. Additionally, metabolic engineering including pck, pyc, ppc, and aceE deletion, completely disrupted the metabolic connection between glycolysis and the TCA cycle, further enhancing α-carotene production. This strategic intervention directed glucose and xylose primarily towards target chemical production, while acetate supplied essential metabolites for cell growth recovery. The engineered strain C. glutamicum m8 achieved 30 mg/g α-carotene, 67% higher than strain m4. In fed-batch fermentation, strain m8 produced 1802 mg/L of α-carotene, marking the highest titer reported to date in microbial fermentation. Moreover, it exhibited excellent performance in authentic lignocellulosic hydrolysate, producing 216 mg/L α-carotene, 1.45 times higher than the initial strain (m4). These labor-division strategies significantly contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources.


Assuntos
Corynebacterium glutamicum , Engenharia Metabólica , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Glucose/metabolismo , Xilose/metabolismo , Carotenoides/metabolismo , Carbono/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/biossíntese
2.
Bioresour Technol ; 406: 131053, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944318

RESUMO

Lignocellulose presents a promising alternative to fossil fuels. Monitoring the mass and size changes of lignocellulosic particles without disrupting the process can assist in adjusting pretreatment and enzymatic hydrolysis, where conventional sieving methods fall short. A method utilizing focused beam reflectance measurement (FBRM) was developed to establish mathematical correlations between FBRM chord information (chord length and count) and particle characteristics (weight and size) quantified through sieving. Results indicate particle size exhibits a linear correlation with the square weighted median chord length (Lsqr) with R2 at 0.93. Further, real-time bulk particle mass can be predicted using Lsqr and chord count (R2 0.98). These correlations are applicable in range 53 µm to 358.5 µm. Real-time monitoring of enzymatic hydrolysis of corn stalks has demonstrated the practical applicability of FBRM. This study introduces a novel approach for online characterization of lignocellulosic particles, thereby enhancing lignocellulosic biorefineries.


Assuntos
Lignina , Tamanho da Partícula , Lignina/química , Zea mays/química , Hidrólise , Biotecnologia/métodos
3.
Bioresour Technol ; 402: 130774, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701983

RESUMO

Formate as an ideal mediator between the physicochemical and biological realms can be obtained from electrochemical reduction of CO2 and used to produce bio-chemicals. Yet, limitations arise when employing natural formate-utilizing microorganisms due to restricted product range and low biomass yield. This study presents a breakthrough: engineered Corynebacterium glutamicum strains (L2-L4) through modular engineering. L2 incorporates the formate-tetrahydrofolate cycle and reverse glycine cleavage pathway, L3 enhances NAD(P)H regeneration, and L4 reinforces metabolic flux. Metabolic modeling elucidates C1 assimilation, guiding strain optimization for co-fermentation of formate and glucose. Strain L4 achieves an OD600 of 0.5 and produces 0.6 g/L succinic acid. 13C-labeled formate confirms C1 assimilation, and further laboratory evolution yields 1.3 g/L succinic acid. This study showcases a successful model for biologically assimilating formate in C. glutamicum that could be applied in C1-based biotechnological production, ultimately forming a formate-based bioeconomy.


Assuntos
Biomassa , Corynebacterium glutamicum , Formiatos , Engenharia Metabólica , Ácido Succínico , Corynebacterium glutamicum/metabolismo , Formiatos/metabolismo , Engenharia Metabólica/métodos , Ácido Succínico/metabolismo , Fermentação , Modelos Biológicos , Glucose/metabolismo
4.
Biotechnol Adv ; 73: 108372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38714276

RESUMO

Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.


Assuntos
Fontes de Energia Bioelétrica , Biocombustíveis , Eletrólise , Anaerobiose , Fontes de Energia Bioelétrica/microbiologia , Reatores Biológicos , Metano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA