Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 546(7658): 396-400, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28617467

RESUMO

Adhesion strategies that rely on mechanical interlocking or molecular attractions between surfaces can suffer when coming into contact with liquids. Thus far, artificial wet and dry adhesives have included hierarchical mushroom-shaped or porous structures that allow suction or capillarity, supramolecular structures comprising nanoparticles, and chemistry-based attractants that use various protein polyelectrolytes. However, it is challenging to develop adhesives that are simple to make and also perform well-and repeatedly-under both wet and dry conditions, while avoiding non-chemical contamination on the adhered surfaces. Here we present an artificial, biologically inspired, reversible wet/dry adhesion system that is based on the dome-like protuberances found in the suction cups of octopi. To mimic the architecture of these protuberances, we use a simple, solution-based, air-trap technique that involves fabricating a patterned structure as a polymeric master, and using it to produce a reversed architecture, without any sophisticated chemical syntheses or surface modifications. The micrometre-scale domes in our artificial adhesive enhance the suction stress. This octopus-inspired system exhibits strong, reversible, highly repeatable adhesion to silicon wafers, glass, and rough skin surfaces under various conditions (dry, moist, under water and under oil). To demonstrate a potential application, we also used our adhesive to transport a large silicon wafer in air and under water without any resulting surface contamination.


Assuntos
Adesividade , Adesivos/química , Materiais Biomiméticos/química , Octopodiformes/anatomia & histologia , Polímeros/química , Adesivo Transdérmico , Molhabilidade , Animais , Biomimética , Pele , Suínos , Água/química
2.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500343

RESUMO

Sargassum horneri (SH) is a seaweed that has several features that benefit health. In this study, we investigated the immune-enhancing effect of SH, focusing on the role of spleen-mediated immune functions. Chromatographic analysis of SH identified six types of monosaccharide contents, including mannose, rhamnose glucose, galactose xylose and fucose. SH increased cell proliferation of primary cultured naïve splenocytes treated with or without cyclophosphamide (CPA), an immunosuppression agent. SH also reversed the CPA-induced decrease in Th1 cytokines. In vivo investigation revealed that SH administration can increase the tissue weight of major immune organs, such as the spleen and thymus. A similar effect was observed in CPA-injected immunosuppressed BALB/c mice. SH treatment increased the weight of the spleen and thymus, blood immune cell count and Th1 cytokine expression. Additionally, the YAC-1-targeting activities of natural killer cells, which are important in innate immunity, were upregulated upon SH treatment. Overall, our study demonstrates the immune-enhancing effect of SH, suggesting its potential as a medicinal or therapeutic agent for pathologic conditions involving immunosuppression.


Assuntos
Sargassum , Camundongos , Animais , Sargassum/química , Camundongos Endogâmicos BALB C , Ciclofosfamida/farmacologia , Terapia de Imunossupressão , Citocinas/metabolismo
3.
Adv Mater ; 34(5): e2105338, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34783075

RESUMO

Recent studies on soft adhesives have sought to deeply understand how their chemical or mechanical structures interact strongly with living tissues. The aim is to optimally address the unmet needs of patients with acute or chronic diseases. Synergistic adhesion involving both electrostatic (hydrogen bonds) and mechanical interactions (capillarity-assisted suction stress) seems to be effective in overcoming the challenges associated with long-term unstable coupling to tissues. Here, an electrostatically and mechanically synergistic mechanism of residue-free, sustainable, in situ tissue adhesion by implementing hybrid multiscale architectonics. To deduce the mechanism, a thermodynamic model based on a tailored multiscale combinatory adhesive is proposed. The model supports the experimental results that the thermodynamically controlled swelling of the nanoporous hydrogel embedded in the hierarchical elastomeric structure enhances biofluid-insensitive, sustainable, in situ adhesion to diverse soft, slippery, and wet organ surfaces, as well as clean detachment in the peeling direction. Based on the robust tissue adhesion capability, universal reliable measurements of electrophysiological signals generated by various tissues, ranging from rodent sciatic nerve, the muscle, brain, and human skin, are successfully demonstrated.


Assuntos
Hidrogéis , Adesivos Teciduais , Adesivos/química , Humanos , Hidrogéis/química , Eletricidade Estática , Aderências Teciduais , Adesivos Teciduais/química
4.
Bioeng Transl Med ; 7(2): e10279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600658

RESUMO

Mesenchymal stem cells such as human adipose tissue-derived stem cells (hADSCs) have been used as a representative therapeutic agent for tissue regeneration because of their high proliferation and paracrine factor-secreting abilities. However, certain points regarding conventional ADSC delivery systems, such as low cell density, secreted cytokine levels, and cell viability, still need to be addressed for treating severe wounds. In this study, we developed a three-dimensional (3D) cavity-structured stem cell-laden system for overdense delivery of cells into severe wound sites. Our system includes a hydrophobic surface and cavities that can enhance the efficiency of cell delivery to the wound site. In particular, the cavities in the system facilitate hADSC spheroid formation, increasing therapeutic growth factor expression compared with 2D cultured cells. Our hADSC spheroid-loaded patch exhibited remarkably improved cell localization at the wound site and dramatic therapeutic efficacy compared to the conventional cell injection method. Taken together, the hADSC spheroid delivery system focused on cell delivery, and stem cell homing effect at the wound site showed a significantly enhanced wound healing effect. By overcoming the limitations of conventional cell delivery methods, our overdense cell delivery system can contribute to biomedical and clinical applications.

5.
ACS Appl Mater Interfaces ; 13(5): 6930-6940, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523645

RESUMO

For highly conformable and universal transport devices, bioinspired dry adhesion systems with reversible molecular attractions (e.g., van der Waals forces, capillarity, or suction stress) between the engaged surfaces have recently become favorable for various dry/wet processes in flexible devices and medical applications. In addition, many efforts have been made for switchable attachments of such adhesives by employing costly sophisticated systems such as mechanically deformable chucks, UV-radiating components, or fluidic channels. In this work, we propose a simple electrothermally actuating transport device based on an octopus-inspired microsphere-embedded sucker (OMS). The adhesive with microsphere-embedded suckers offers enhanced adhesion on dry/wet surfaces, in accordance with investigation of the geometric and materials parameters of the novel suction architecture for maximizing adhesion interactions. Inspired by muscle actuation of octopus tentacles, we laminate the electrothermally reactive poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonic acid) (PEDOT:PSS) layer on the backside of the OMS adhesive patch. By controlling inputs of electrical energy, our assembled actuator may actively expand and contract reversibly to induce switchable attachments and detachments. Our bioinspired device can be integrated onto a robotic arm to attach and release against dry/wet flexible thin objects.

6.
Biomaterials ; 275: 120954, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34130141

RESUMO

Low cell engraftment is a major problem in tissue engineering. Although various methods related with cell sheets have been attempted to resolve the issue, low cell viability due to oxygen and nutrient depletion remains an obstacle toward advanced therapeutic applications. Cell therapy using fibroblasts is thought of as a good alternative due to the short doubling times of fibroblasts together with their immunomodulatory properties. Furthermore, three-dimensional (3D) fibroblasts exhibit unique angiogenic and inflammation-manipulating properties that are not present in two-dimensional (2D) forms. However, the therapeutic effect of 3D fibroblasts in tissue regeneration has not been fully elucidated. Macrophage polarization has been widely studied, as it stimulates the transition from the inflammation to the proliferation phase of wound healing. Although numerous strategies have been developed to achieve better polarization of macrophages, the low efficacy of these strategies and safety issues remain problematic. To this end, we introduced a biocompatible flat patch with specifically designed holes that form a spheroids-incorporated human dermal fibroblast sheet (SIS) to mediate the activity of inflammatory cytokines for M2 polarization and increase angiogenic efficacy. We further confirmed in vivo enhancement of wound healing with an SIS-laden skin patch (SISS) compared to conventional cell therapy.


Assuntos
Pele , Cicatrização , Fibroblastos , Humanos , Ativação de Macrófagos , Macrófagos
7.
Sci Adv ; 7(25)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34134988

RESUMO

Recent advances in bioinspired nano/microstructures have received attention as promising approaches with which to implement smart skin-interfacial devices for personalized health care. In situ skin diagnosis requires adaptable skin adherence and rapid capture of clinical biofluids. Here, we report a simple, all-in-one device consisting of microplungers and hydrogels that can rapidly capture biofluids and conformally attach to skin for stable, real-time monitoring of health. Inspired by the male diving beetle, the microplungers achieve repeatable, enhanced, and multidirectional adhesion to human skin in dry/wet environments, revealing the role of the cavities in these architectures. The hydrogels within the microplungers instantaneously absorb liquids from the epidermis for enhanced adhesiveness and reversibly change color for visual indication of skin pH levels. To realize advanced biomedical technologies for the diagnosis and treatment of skin, our suction-mediated device is integrated with a machine learning framework for accurate and automated colorimetric analysis of pH levels.


Assuntos
Besouros , Hidrogéis/metabolismo , Aprendizado de Máquina , Dermatopatias/terapia , Adesividade , Animais , Hidrogéis/química , Masculino , Dermatopatias/diagnóstico
8.
ACS Nano ; 15(9): 14137-14148, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34425674

RESUMO

The development of bioinspired switchable adhesive systems has promising solutions in various industrial/medical applications. Switchable and perceptive adhesion regardless of the shape or surface shape of the object is still challenging in dry and aquatic surroundings. We developed an electronic sensory soft adhesive device that recapitulates the attaching, mechanosensory, and decision-making capabilities of a soft adhesion actuator. The soft adhesion actuator of an artificial octopus sucker may precisely control its robust attachment against surfaces with various topologies in wet environments as well as a rapid detachment upon deflation. Carbon nanotube-based strain sensors are three-dimensionally coated onto the irregular surface of the artificial octopus sucker to mimic nerve-like functions of an octopus and identify objects via patterns of strain distribution. An integration with machine learning complements decision-making capabilities to predict the weight and center of gravity for samples with diverse shapes, sizes, and mechanical properties, and this function may be useful in turbid water or fragile environments, where it is difficult to utilize vision.


Assuntos
Nanotubos de Carbono , Eletrônica
9.
ACS Appl Mater Interfaces ; 12(12): 14425-14432, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32125136

RESUMO

The development of an electronic skin patch that can be used in underwater environments can be considered essential for fabricating long-term wearable devices and biomedical applications. Herein, we report a stretchable conductive polymer composite (CPC) patch on which an octopus sucker-inspired structure is formed to conformally contact with biological skin that may be rough and wet. The patch is patterned with a hexagonal mesh structure for water and air permeability. The patch films are suited for a strain sensor or a stretchable electrode as their piezoresistive responses can be controlled by changing the concentration of conductive fillers to polymeric polyurethane. The CPC patch with a hexagonal mesh pattern (HMP) can be easily stretched for a strain sensor and is insensitive to tensile strain, making the patch suitable as a stretchable electrode. Furthermore, the octopus-like structures formed on the skeleton of the HMP allow the patch to maintain strong adhesion underwater by easily draining excess water trapped between the patch and skin. The sensor patch (<50 wt % carbon nanotubes (CNTs)) can sensitively detect the bending strain of a finger, and the electrode patch (50 wt % CNTs with addition of Ag flakes) can stably measure biosignals (e.g., electrocardiogram signals) under both dry and wet conditions owing to the octopus-like structure and HMP.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Resistência à Tração , Dispositivos Eletrônicos Vestíveis , Ar , Humanos , Poliuretanos/química , Água/química
10.
ACS Appl Mater Interfaces ; 12(4): 5058-5064, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31809014

RESUMO

Anisotropic small structures found throughout living nature have unique functionalities as seen by Gecko lizards. Here, we present a simple yet programmable method for fabricating anisotropic, submicrometer-sized bent pillar structures using photoreconfiguration of an azopolymer. A slant irradiation of a p-polarized light on the pillar structure of an azopolymer simply results in a bent pillar structure. By combining the field-gradient effect and directionality of photofluidization, control of the bending shape and the curvature is achieved. With the bent pillar patterned surface, anisotropic wetting and directional adhesion are demonstrated. Moreover, the bent pillar structures can be transferred to other polymers, highlighting the practical importance of this method. We believe that this pragmatic method to fabricate bent pillars can be used in a reliable manner for many applications requiring the systematic variation of a bent pillar structure.

11.
ACS Appl Mater Interfaces ; 11(29): 25674-25681, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31251017

RESUMO

Mimicking the attachment of octopus suction cups has become appealing for the development of skin/organ adhesive patches capable of strong, reversible adhesion in dry and wet conditions. However, achieving high conformity against the three-dimensionally (3D) rough and curved surfaces of the human body remains an enduring challenge for further medical applications of wound protection, diagnosis, or therapeutics. Here, an adhesive patch inspired by the soft wrinkles of miniaturized 3D octopus suction cups is presented for high drainability and robust attachment against dry and wet human organs. Investigating the structural aspects of the wrinkles, a simple model is developed to maximize capillary interactions of the wrinkles against wet substrates. A layer of soft siloxane derivative is then transferred onto the wrinkles to enhance fixation against dry and sweaty skin as well as various wet organ surfaces. Our bioinspired patch offers opportunities for enhancing the versatility of adhesives for developing skin- and/or organ-attachable devices.


Assuntos
Materiais Biomiméticos , Telas Cirúrgicas , Adesivos Teciduais , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Ação Capilar , Humanos , Octopodiformes , Suínos , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia
12.
Adv Mater ; 31(34): e1803309, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30773697

RESUMO

The attachment phenomena of various hierarchical architectures found in nature have extensively drawn attention for developing highly biocompatible adhesive on skin or wet inner organs without any chemical glue. Structural adhesive systems have become important to address the issues of human-machine interactions by smart outer/inner organ-attachable devices for diagnosis and therapy. Here, advances in designs of biologically inspired adhesive architectures are reviewed in terms of distinct structural properties, attachment mechanisms to biosurfaces by physical interactions, and noteworthy fabrication methods. Recent demonstrations of bioinspired adhesive architectures as adhesive layers for medical applications from skin patches to multifunctional bioelectronics are presented. To conclude, current challenges and prospects on potential applications are also briefly discussed.


Assuntos
Adesivos/química , Materiais Biomiméticos/química , Adesivo Transdérmico , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Eletrônica , Humanos , Polímeros/química
13.
Adv Sci (Weinh) ; 5(8): 1800100, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128235

RESUMO

Adhesion capabilities of various skin architectures found in nature can generate remarkable physical interactions with their engaged surfaces. Among them, octopus suckers have unique hierarchical structures for reversible adhesion in dry and wet conditions. Here, highly adaptable, biocompatible, and repeatable adhesive patches with unfoldable, 3D microtips in micropillars inspired by the rim and infundibulum of octopus suction cup are presented. The bioinspired synthetic adhesives are fabricated by controlling the meniscus of a liquid precursor in a simple molding process without any hierarchical assemblies or additional surface treatments. Experimental and theoretical studies are investigated upon to increase the effective contact area between unfoldable microtips of devices, and enhance adhesion performances and adaptability on a Si wafer in both dry and underwater conditions (max. 11 N cm-2 in pull-off strength) as well as on a moist pigskin (max. 14.6 mJ peeling energy). Moreover, the geometry-controlled microsuckers exhibit high-repeatability (over 100 cycles) in a pull-off direction. The adhesive demonstrates stable attachments on a moist, hairy, and rough skin, without any observable chemical residues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA