Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Genet Epidemiol ; 47(6): 409-431, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37101379

RESUMO

In genetic studies, many phenotypes have multiple naturally ordered discrete values. The phenotypes can be correlated with each other. If multiple correlated ordinal traits are analyzed simultaneously, the power of analysis may increase significantly while the false positives can be controlled well. In this study, we propose bivariate functional ordinal linear regression (BFOLR) models using latent regressions with cumulative logit link or probit link to perform a gene-based analysis for bivariate ordinal traits and sequencing data. In the proposed BFOLR models, genetic variant data are viewed as stochastic functions of physical positions, and the genetic effects are treated as a function of physical positions. The BFOLR models take the correlation of the two ordinal traits into account via latent variables. The BFOLR models are built upon functional data analysis which can be revised to analyze the bivariate ordinal traits and high-dimension genetic data. The methods are flexible and can analyze three types of genetic data: (1) rare variants only, (2) common variants only, and (3) a combination of rare and common variants. Extensive simulation studies show that the likelihood ratio tests of the BFOLR models control type I errors well and have good power performance. The BFOLR models are applied to analyze Age-Related Eye Disease Study data, in which two genes, CFH and ARMS2, are found to strongly associate with eye drusen size, drusen area, age-related macular degeneration (AMD) categories, and AMD severity scale.


Assuntos
Degeneração Macular , Modelos Genéticos , Humanos , Fenótipo , Degeneração Macular/genética , Simulação por Computador , Modelos Lineares
2.
Hum Mol Genet ; 31(11): 1909-1919, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35022715

RESUMO

Refractive errors are associated with a range of pathological conditions, such as myopic maculopathy and glaucoma, and are highly heritable. Studies of missense and putative loss of function (pLOF) variants identified via whole exome sequencing (WES) offer the prospect of directly implicating potentially causative disease genes. We performed a genome-wide association study for refractive error in 51 624 unrelated adults, of European ancestry, aged 40-69 years from the UK and genotyped using WES. After testing 29 179 pLOF and 495 263 missense variants, 1 pLOF and 18 missense variants in 14 distinct genomic regions were taken forward for fine-mapping analysis. This yielded 19 putative causal variants of which 18 had a posterior inclusion probability >0.5. Of the 19 putative causal variants, 12 were novel discoveries. Specific variants were associated with a more myopic refractive error, while others were associated with a more hyperopic refractive error. Association with age of onset of spectacle wear (AOSW) was examined in an independent validation sample (38 100 early AOSW cases and 74 243 controls). Of 11 novel variants that could be tested, 8 (73%) showed evidence of association with AOSW status. This work identified COL4A4 and ATM as novel candidate genes associated with refractive error. In addition, novel putative causal variants were identified in the genes RASGEF1, ARMS2, BMP4, SIX6, GSDMA, GNGT2, ZNF652 and CRX. Despite these successes, the study also highlighted the limitations of community-based WES studies compared with high myopia case-control WES studies.


Assuntos
Miopia , Erros de Refração , Adulto , Exoma/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Miopia/genética , Proteínas de Neoplasias/genética , Proteínas Citotóxicas Formadoras de Poros , Erros de Refração/genética , Sequenciamento do Exoma
3.
Hum Mol Genet ; 31(16): 2831-2843, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138370

RESUMO

Differences by sex in lung cancer incidence and mortality have been reported which cannot be fully explained by sex differences in smoking behavior, implying existence of genetic and molecular basis for sex disparity in lung cancer development. However, the information about sex dimorphism in lung cancer risk is quite limited despite the great success in lung cancer association studies. By adopting a stringent two-stage analysis strategy, we performed a genome-wide gene-sex interaction analysis using genotypes from a lung cancer cohort including ~ 47 000 individuals with European ancestry. Three low-frequency variants (minor allele frequency < 0.05), rs17662871 [odds ratio (OR) = 0.71, P = 4.29×10-8); rs79942605 (OR = 2.17, P = 2.81×10-8) and rs208908 (OR = 0.70, P = 4.54×10-8) were identified with different risk effect of lung cancer between men and women. Further expression quantitative trait loci and functional annotation analysis suggested rs208908 affects lung cancer risk through differential regulation of Coxsackie virus and adenovirus receptor gene expression in lung tissues between men and women. Our study is one of the first studies to provide novel insights about the genetic and molecular basis for sex disparity in lung cancer development.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Pulmão , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética
4.
Genes Immun ; 24(4): 200-206, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488248

RESUMO

Childhood-onset systemic lupus erythematosus (cSLE) patients are unique, with hallmarks of Mendelian disorders (early-onset and severe disease) and thus are an ideal population for genetic investigation of SLE. In this study, we use the transmission disequilibrium test (TDT), a family-based genetic association analysis that employs robust methodology, to analyze whole genome sequencing data. We aim to identify novel genetic associations in an ancestrally diverse, international cSLE cohort. Forty-two cSLE patients and 84 unaffected parents from 3 countries underwent whole genome sequencing. First, we performed TDT with single nucleotide variant (SNV)-based (common variants) using PLINK 1.9, and gene-based (rare variants) analyses using Efficient and Parallelizable Association Container Toolbox (EPACTS) and rare variant TDT (rvTDT), which applies multiple gene-based burden tests adapted for TDT, including the burden of rare variants test. Applying the GWAS standard threshold (5.0 × 10-8) to common variants, our SNV-based analysis did not return any genome-wide significant SNVs. The rare variant gene-based TDT analysis identified many novel genes significantly enriched in cSLE patients, including HNRNPUL2, a DNA repair protein, and DNAH11, a ciliary movement protein, among others. Our approach identifies several novel SLE susceptibility genes in an ancestrally diverse childhood-onset lupus cohort.


Assuntos
Desequilíbrio de Ligação , Lúpus Eritematoso Sistêmico , Estudo de Associação Genômica Ampla , Genoma Humano , Idade de Início , Lúpus Eritematoso Sistêmico/genética , Humanos , Masculino , Feminino , Criança , Adolescente , Variação Genética
5.
Genet Epidemiol ; 46(5-6): 234-255, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35438198

RESUMO

In this paper, we develop functional ordinal logistic regression (FOLR) models to perform gene-based analysis of ordinal traits. In the proposed FOLR models, genetic variant data are viewed as stochastic functions of physical positions and the genetic effects are treated as a function of physical positions. The FOLR models are built upon functional data analysis which can be revised to analyze the ordinal traits and high dimension genetic data. The proposed methods are capable of dealing with dense genotype data which is usually encountered in analyzing the next-generation sequencing data. The methods are flexible and can analyze three types of genetic data: (1) rare variants only, (2) common variants only, and (3) a combination of rare and common variants. Simulation studies show that the likelihood ratio test statistics of the FOLR models control type I errors well and have good power performance. The proposed methods achieve the goals of analyzing ordinal traits directly, reducing high dimensionality of dense genetic variants, being computationally manageable, facilitating model convergence, properly controlling type I errors, and maintaining high power levels. The FOLR models are applied to analyze Age-Related Eye Disease Study data, in which two genes are found to strongly associate with four ordinal traits.


Assuntos
Testes Genéticos , Modelos Genéticos , Simulação por Computador , Variação Genética , Genótipo , Humanos , Modelos Logísticos , Fenótipo
6.
Int J Cancer ; 153(2): 364-372, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36916144

RESUMO

A unique approach with rare resources was used to identify candidate variants predisposing to familial nonsquamous nonsmall-cell lung cancers (NSNSCLC). We analyzed sequence data from NSNSCLC-affected cousin pairs belonging to high-risk lung cancer pedigrees identified in a genealogy of Utah linked to statewide cancer records to identify rare, shared candidate predisposition variants. Variants were tested for association with lung cancer risk in UK Biobank. Evidence for linkage with lung cancer was also reviewed in families from the Genetic Epidemiology of Lung Cancer Consortium. Protein prediction modeling compared the mutation with reference. We sequenced NSNSCLC-affected cousin pairs from eight high-risk lung cancer pedigrees and identified 66 rare candidate variants shared in the cousin pairs. One variant in the FGF5 gene also showed significant association with lung cancer in UKBiobank. This variant was observed in 3/163 additional sampled Utah lung cancer cases, 2 of whom were related in another independent pedigree. Modeling of the predicted protein predicted a second binding site for SO4 that may indicate binding differences. This unique study identified multiple candidate predisposition variants for NSNSCLC, including a rare variant in FGF5 that was significantly associated with lung cancer risk and that segregated with lung cancer in the two pedigrees in which it was observed. FGF5 is an oncogenic factor in several human cancers, and the mutation found here (W81C) changes the binding ability of heparan sulfate to FGF5, which might lead to its deregulation. These results support FGF5 as a potential NSNSCLC predisposition gene and present additional candidate predisposition variants.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Predisposição Genética para Doença , Genótipo , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Mutação , Linhagem , Fator 5 de Crescimento de Fibroblastos
7.
Genet Epidemiol ; 45(5): 455-470, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33645812

RESUMO

Genetic studies of two related survival outcomes of a pleiotropic gene are commonly encountered but statistical models to analyze them are rarely developed. To analyze sequencing data, we propose mixed effect Cox proportional hazard models by functional regressions to perform gene-based joint association analysis of two survival traits motivated by our ongoing real studies. These models extend fixed effect Cox models of univariate survival traits by incorporating variations and correlation of multivariate survival traits into the models. The associations between genetic variants and two survival traits are tested by likelihood ratio test statistics. Extensive simulation studies suggest that type I error rates are well controlled and power performances are stable. The proposed models are applied to analyze bivariate survival traits of left and right eyes in the age-related macular degeneration progression.


Assuntos
Oftalmopatias , Variação Genética , Oftalmopatias/genética , Estudos de Associação Genética , Humanos , Modelos Genéticos , Fenótipo
8.
Hum Genet ; 141(9): 1515-1528, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34862561

RESUMO

Genetic data have become increasingly complex within the past decade, leading researchers to pursue increasingly complex questions, such as those involving epistatic interactions and protein prediction. Traditional methods are ill-suited to answer these questions, but machine learning (ML) techniques offer an alternative solution. ML algorithms are commonly used in genetics to predict or classify subjects, but some methods evaluate which features (variables) are responsible for creating a good prediction; this is called feature importance. This is critical in genetics, as researchers are often interested in which features (e.g., SNP genotype or environmental exposure) are responsible for a good prediction. This allows for the deeper analysis beyond simple prediction, including the determination of risk factors associated with a given phenotype. Feature importance further permits the researcher to peer inside the black box of many ML algorithms to see how they work and which features are critical in informing a good prediction. This review focuses on ML methods that provide feature importance metrics for the analysis of genetic data. Five major categories of ML algorithms: k nearest neighbors, artificial neural networks, deep learning, support vector machines, and random forests are described. The review ends with a discussion of how to choose the best machine for a data set. This review will be particularly useful for genetic researchers looking to use ML methods to answer questions beyond basic prediction and classification.


Assuntos
Aprendizado de Máquina , Máquina de Vetores de Suporte , Algoritmos , Humanos , Redes Neurais de Computação
9.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563467

RESUMO

Complex asparagine-linked glycosylation plays key roles in cellular functions, including cellular signaling, protein stability, and immune response. Previously, we characterized the appearance of a complex asparagine-linked glycosylated form of lysosome-associated membrane protein 1 (LAMP1) in the cerebellum of Npc1-/- mice. This LAMP1 form was found on activated microglia, and its appearance correlated both spatially and temporally with cerebellar Purkinje neuron loss. To test the importance of complex asparagine-linked glycosylation in NPC1 pathology, we generated NPC1 knock-out mice deficient in MGAT5, a key Golgi-resident glycosyl transferase involved in complex asparagine-linked glycosylation. Our results show that Mgat5-/-:Npc1-/- mice were smaller than Mgat5+/+:Npc1-/- mice, and exhibited earlier NPC1 disease onset and reduced lifespan. Western blot and lectin binding analyses of cerebellar extracts confirmed the reduction in complex asparagine-linked glycosylation, and the absence of the hyper-glycosylated LAMP1 previously observed. Western blot analysis of cerebellar extracts demonstrated reduced calbindin staining in Mgat5-/-:Npc1-/- mice compared to Mgat5+/+:Npc1-/- mutant mice, and immunofluorescent staining of cerebellar sections indicated decreased levels of Purkinje neurons and increased astrogliosis in Mgat5-/-:Npc1-/- mice. Our results suggest that reduced asparagine-linked glycosylation increases NPC1 disease severity in mice, and leads to the hypothesis that mutations in genes involved in asparagine-linked glycosylation may contribute to disease severity progression in individuals with NPC1. To examine this with respect to MGAT5, we analyzed 111 NPC1 patients for two MGAT5 SNPs associated with multiple sclerosis; however, we did not identify an association with NPC1 phenotypic severity.


Assuntos
N-Acetilglucosaminiltransferases , Doença de Niemann-Pick Tipo C , Animais , Asparagina/metabolismo , Asparagina/farmacologia , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , N-Acetilglucosaminiltransferases/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia
10.
PLoS Genet ; 14(8): e1007532, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102696

RESUMO

Biliary atresia (BA) is a rare pediatric cholangiopathy characterized by fibrosclerosing obliteration of the extrahepatic bile ducts, leading to cholestasis, fibrosis, cirrhosis, and eventual liver failure. The etiology of BA remains unknown, although environmental, inflammatory, infectious, and genetic risk factors have been proposed. We performed a genome-wide association study (GWAS) in a European-American cohort of 343 isolated BA patients and 1716 controls to identify genetic loci associated with BA. A second GWAS was performed in an independent European-American cohort of 156 patients with BA and other extrahepatic anomalies and 212 controls to confirm the identified candidate BA-associated SNPs. Meta-analysis revealed three genome-wide significant BA-associated SNPs on 2p16.1 (rs10865291, rs6761893, and rs727878; P < 5 ×10-8), located within the fifth intron of the EFEMP1 gene, which encodes a secreted extracellular protein implicated in extracellular matrix remodeling, cell proliferation, and organogenesis. RNA expression analysis showed an increase in EFEMP1 transcripts from human liver specimens isolated from patients with either BA or other cholestatic diseases when compared to normal control liver samples. Immunohistochemistry demonstrated that EFEMP1 is expressed in cholangiocytes and vascular smooth muscle cells in liver specimens from patients with BA and other cholestatic diseases, but it is absent from cholangiocytes in normal control liver samples. Efemp1 transcripts had higher expression in cholangiocytes and portal fibroblasts as compared with other cell types in normal rat liver. The identification of a novel BA-associated locus, and implication of EFEMP1 as a new BA candidate susceptibility gene, could provide new insights to understanding the mechanisms underlying this severe pediatric disorder.


Assuntos
Atresia Biliar/diagnóstico , Atresia Biliar/genética , Cromossomos Humanos Par 2/genética , Proteínas da Matriz Extracelular/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Animais , Criança , Etnicidade/genética , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Técnicas de Genotipagem , Humanos , Fígado/metabolismo , Modelos Logísticos , Masculino , Músculo Liso Vascular/citologia , Organogênese , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ratos
11.
Genet Epidemiol ; 43(1): 102-111, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30334581

RESUMO

Results from association studies are traditionally corroborated by replicating the findings in an independent data set. Although replication studies may be comparable for the main trait or phenotype of interest, it is unlikely that secondary phenotypes will be comparable across studies, making replication problematic. Alternatively, there may simply not be a replication sample available because of the nature or frequency of the phenotype. In these situations, an approach based on complementary pairs stability selection for genome-wide association study (ComPaSS-GWAS), is proposed as an ad-hoc alternative to replication. In this method, the sample is randomly split into two conditionally independent halves multiple times (resamples) and a GWAS is performed on each half in each resample. Similar in spirit to testing for association with independent discovery and replication samples, a marker is corroborated if its p-value is significant in both halves of the resample. Simulation experiments were performed for both nongenetic and genetic models. The type I error rate and power of ComPaSS-GWAS were determined and compared to the statistical properties of a traditional GWAS. Simulation results show that the type I error rate decreased as the number of resamples increased with only a small reduction in power and that these results were comparable with those from a traditional GWAS. Blood levels of vitamin pyridoxal 5'-phosphate from the Trinity Student Study (TSS) were used to validate this approach. The results from the validation study were compared to, and were consistent with, those obtained from previously published independent replication data and functional studies.


Assuntos
Estudo de Associação Genômica Ampla , Simulação por Computador , Humanos , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
12.
Genet Epidemiol ; 43(8): 952-965, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31502722

RESUMO

The importance to integrate survival analysis into genetics and genomics is widely recognized, but only a small number of statisticians have produced relevant work toward this study direction. For unrelated population data, functional regression (FR) models have been developed to test for association between a quantitative/dichotomous/survival trait and genetic variants in a gene region. In major gene association analysis, these models have higher power than sequence kernel association tests. In this paper, we extend this approach to analyze censored traits for family data or related samples using FR based mixed effect Cox models (FamCoxME). The FamCoxME model effect of major gene as fixed mean via functional data analysis techniques, the local gene or polygene variations or both as random, and the correlation of pedigree members by kinship coefficients or genetic relationship matrix or both. The association between the censored trait and the major gene is tested by likelihood ratio tests (FamCoxME FR LRT). Simulation results indicate that the LRT control the type I error rates accurately/conservatively and have good power levels when both local gene or polygene variations are modeled. The proposed methods were applied to analyze a breast cancer data set from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). The FamCoxME provides a new tool for gene-based analysis of family-based studies or related samples.


Assuntos
Estudos de Associação Genética , Modelos Genéticos , Análise de Sobrevida , Simulação por Computador , Variação Genética , Humanos , Linhagem , Fenótipo , Modelos de Riscos Proporcionais , Análise de Regressão
13.
Genet Epidemiol ; 43(1): 37-49, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30246882

RESUMO

We previously demonstrated how sharing of rare variants (RVs) in distant affected relatives can be used to identify variants causing a complex and heterogeneous disease. This approach tested whether single RVs were shared by all sequenced affected family members. However, as with other study designs, joint analysis of several RVs (e.g., within genes) is sometimes required to obtain sufficient statistical power. Further, phenocopies can lead to false negatives for some causal RVs if complete sharing among affected is required. Here, we extend our methodology (Rare Variant Sharing, RVS) to address these issues. Specifically, we introduce gene-based analyses, a partial sharing test based on RV sharing probabilities for subsets of affected relatives and a haplotype-based RV definition. RVS also has the desirable feature of not requiring external estimates of variant frequency or control samples, provides functionality to assess and address violations of key assumptions, and is available as open source software for genome-wide analysis. Simulations including phenocopies, based on the families of an oral cleft study, revealed the partial and complete sharing versions of RVS achieved similar statistical power compared with alternative methods (RareIBD and the Gene-Based Segregation Test), and had superior power compared with the pedigree Variant Annotation, Analysis, and Search Tool (pVAAST) linkage statistic. In studies of multiplex cleft families, analysis of rare single nucleotide variants in the exome of 151 affected relatives from 54 families revealed no significant excess sharing in any one gene, but highlighted different patterns of sharing revealed by the complete and partial sharing tests.


Assuntos
Predisposição Genética para Doença , Variação Genética , Linhagem , Análise de Sequência de DNA , Fissura Palatina/genética , Simulação por Computador , Exoma/genética , Heterogeneidade Genética , Haplótipos/genética , Humanos , Modelos Genéticos , Fenótipo , Probabilidade , Fatores de Risco , Sequenciamento do Exoma
14.
Genet Epidemiol ; 43(2): 189-206, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30537345

RESUMO

We develop linear mixed models (LMMs) and functional linear mixed models (FLMMs) for gene-based tests of association between a quantitative trait and genetic variants on pedigrees. The effects of a major gene are modeled as a fixed effect, the contributions of polygenes are modeled as a random effect, and the correlations of pedigree members are modeled via inbreeding/kinship coefficients. F -statistics and χ 2 likelihood ratio test (LRT) statistics based on the LMMs and FLMMs are constructed to test for association. We show empirically that the F -distributed statistics provide a good control of the type I error rate. The F -test statistics of the LMMs have similar or higher power than the FLMMs, kernel-based famSKAT (family-based sequence kernel association test), and burden test famBT (family-based burden test). The F -statistics of the FLMMs perform well when analyzing a combination of rare and common variants. For small samples, the LRT statistics of the FLMMs control the type I error rate well at the nominal levels α = 0.01 and 0.05 . For moderate/large samples, the LRT statistics of the FLMMs control the type I error rates well. The LRT statistics of the LMMs can lead to inflated type I error rates. The proposed models are useful in whole genome and whole exome association studies of complex traits.


Assuntos
Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Modelos Genéticos , Característica Quantitativa Herdável , Simulação por Computador , Família , Humanos , Modelos Lineares , Miopia/genética
15.
Hum Mol Genet ; 26(24): 4975-4988, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29040465

RESUMO

Vitamin B12 deficiency is common in older individuals. Circulating vitamin B12 concentration can be used to diagnose deficiency, but this test has substantial false positive and false negative rates. We conducted genome-wide association studies (GWAS) in which we resolved total serum vitamin B12 into the fractions bound to transcobalamin and haptocorrin: two carrier proteins with very different biological properties. We replicated reported associations between total circulating vitamin B12 concentrations and a common null variant in FUT2. This allele determines the secretor phenotype in which blood group antigens are found in non-blood body fluids. Vitamin B12 bound to haptocorrin (holoHC) remained highly associated with FUT2 rs601338 (p.Trp154Ter). Transcobalamin bound vitamin B12 (holoTC) was not influenced by this variant. HoloTC is the bioactive the form of the vitamin and is taken up by all tissues. In contrast, holoHC is only taken up by the liver. Using holoHC from individuals with known FUT2 genotypes, we demonstrated that FUT2 rs601338 genotype influences the glycosylation of haptocorrin. We then developed an experimental model demonstrating that holoHC is transported into cultured hepatic cells (HepG2) via the asialoglycoprotein receptor (ASGR). Our data challenge current published hypotheses on the influence of genetic variation on this clinically important measure and are consistent with a model in which FUT2 rs601338 influences holoHC by altering haptocorrin glycosylation, whereas B12 bound to non-glycosylated transcobalamin (i.e. holoTC) is not affected. Our findings explain some of the observed disparity between use of total B12 or holoTC as first-line clinical tests of vitamin B12 status.


Assuntos
Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Transcobalaminas/genética , Adulto , Idoso , Transporte Biológico , Feminino , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Glicosilação , Células Hep G2/metabolismo , Humanos , Irlanda , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Transcobalaminas/metabolismo , Vitamina B 12/análise , Vitamina B 12/sangue , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/metabolismo , Galactosídeo 2-alfa-L-Fucosiltransferase
16.
Hum Genet ; 138(4): 339-354, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30826882

RESUMO

Myopia is one of the most common ocular disorders in the world, yet the genetic etiology of the disease remains poorly understood. Specialized founder populations, such as the Pennsylvania Amish, provide the opportunity to utilize exclusive genomic architecture, like unique haplotypes, to better understand the genetic causes of myopia. We perform genetic linkage analysis on Pennsylvania Amish families that have a strong familial history of myopia to map any potential causal variants and genes for the disease. 293 individuals from 25 extended families were genotyped on the Illumina ExomePlus array and merged with previous microsatellite data. We coded myopia affection as a binary phenotype; myopia was defined as having a mean spherical equivalent (MSE) of less than or equal to - 1 D (diopters). Two-point and multipoint parametric linkage analyses were performed under an autosomal dominant model. When allowing for locus heterogeneity, we identified two novel genome-wide significantly linked variants at 12q15 (heterogeneity LOD, HLOD = 3.77) in PTPRB and at 8q21.3 (HLOD = 3.35) in CNGB3. We identified further three genome-wide significant variants within a single family. These three variants were located in exons of SLC6A18 at 5p15.33 (LODs ranged from 3.51 to 3.37). Multipoint analysis confirmed the significant signal at 5p15.33 with six genome-wide significant variants (LODs ranged from 3.6 to 3.3). Further suggestive evidence of linkage was observed in several other regions of the genome. All three novel linked regions contain strong candidate genes, especially CNGB3 on 8q21.3, which has been shown to affect photoreceptors and cause complete color blindness. Whole genome sequencing on these regions is planned to conclusively elucidate the causal variants.


Assuntos
Amish/genética , Cromossomos Humanos Par 12 , Cromossomos Humanos Par 5 , Cromossomos Humanos Par 8 , Miopia/genética , Amish/estatística & dados numéricos , Criança , Pré-Escolar , Família , Feminino , Frequência do Gene , Ligação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Miopia/etnologia , Pennsylvania/epidemiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
17.
Am J Hum Genet ; 98(5): 869-882, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27132595

RESUMO

Methylmalonic acid (MMA) is a by-product of propionic acid metabolism through the vitamin B12 (cobalamin)-dependent enzyme methylmalonyl CoA mutase. Elevated MMA concentrations are a hallmark of several inborn errors of metabolism and indicators of cobalamin deficiency in older persons. In a genome-wide analysis of 2,210 healthy young Irish adults (median age 22 years) we identified a strong association of plasma MMA with SNPs in 3-hydroxyisobutyryl-CoA hydrolase (HIBCH, p = 8.42 × 10(-89)) and acyl-CoA synthetase family member 3 (ACSF3, p = 3.48 × 10(-19)). These loci accounted for 12% of the variance in MMA concentration. The most strongly associated SNP (HIBCH rs291466; c:2T>C) causes a missense change of the initiator methionine codon (minor-allele frequency = 0.43) to threonine. Surprisingly, the resulting variant, p.Met1?, is associated with increased expression of HIBCH mRNA and encoded protein. These homozygotes had, on average, 46% higher MMA concentrations than methionine-encoding homozygotes in young adults with generally low MMA concentrations (0.17 [0.14-0.21] µmol/L; median [25(th)-75(th) quartile]). The association between MMA levels and HIBCH rs291466 was highly significant in a replication cohort of 1,481 older individuals (median age 79 years) with elevated plasma MMA concentrations (0.34 [0.24-0.51] µmol/L; p = 4.0 × 10(-26)). In a longitudinal study of 185 pregnant women and their newborns, the association of this SNP remained significant across the gestational trimesters and in newborns. HIBCH is unique to valine catabolism. Studies evaluating flux through the valine catabolic pathway in humans should account for these variants. Furthermore, this SNP could help resolve equivocal clinical tests where plasma MMA values have been used to diagnose cobalamin deficiency.


Assuntos
Anormalidades Múltiplas/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Ácido Metilmalônico/sangue , Polimorfismo Genético/genética , Tioléster Hidrolases/deficiência , Vitamina B 12/sangue , Anormalidades Múltiplas/sangue , Adolescente , Adulto , Idoso , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Estudos de Casos e Controles , Feminino , Homozigoto , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Gravidez , Tioléster Hidrolases/sangue , Tioléster Hidrolases/genética , População Branca , Adulto Jovem
18.
Am J Hum Genet ; 99(4): 877-885, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666373

RESUMO

The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10-12) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046-0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027-0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale.


Assuntos
Doença/genética , Mutação de Sentido Incorreto/genética , Software , Área Sob a Curva , Análise Mutacional de DNA , Exoma/genética , Frequência do Gene , Humanos , Curva ROC
19.
BMC Med Genet ; 20(1): 27, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704416

RESUMO

BACKGROUND: Myopia is one of most common eye diseases in the world and affects 1 in 4 Americans. It is a complex disease caused by both environmental and genetics effects; the genetics effects are still not well understood. In this study, we performed genetic linkage analyses on Ashkenazi Jewish families with a strong familial history of myopia to elucidate any potential causal genes. METHODS: Sixty-four extended Ashkenazi Jewish families were previously collected from New Jersey. Genotypes from the Illumina ExomePlus array were merged with prior microsatellite linkage data from these families. Additional custom markers were added for candidate regions reported in literature for myopia or refractive error. Myopia was defined as mean spherical equivalent (MSE) of -1D or worse and parametric two-point linkage analyses (using TwoPointLods) and multi-point linkage analyses (using SimWalk2) were performed as well as collapsed haplotype pattern (CHP) analysis in SEQLinkage and association analyses performed with FBAT and rv-TDT. RESULTS: Strongest evidence of linkage was on 1p36(two-point LOD = 4.47) a region previously linked to refractive error (MYP14) but not myopia. Another genome-wide significant locus was found on 8q24.22 with a maximum two-point LOD score of 3.75. CHP analysis also detected the signal on 1p36, localized to the LINC00339 gene with a maximum HLOD of 3.47, as well as genome-wide significant signals on 7q36.1 and 11p15, which overlaps with the MYP7 locus. CONCLUSIONS: We identified 2 novel linkage peaks for myopia on chromosomes 7 and 8 in these Ashkenazi Jewish families and replicated 2 more loci on chromosomes 1 and 11, one previously reported in refractive error but not myopia in these families and the other locus previously reported in the literature. Strong candidate genes have been identified within these linkage peaks in our families. Targeted sequencing in these regions will be necessary to definitively identify causal variants under these linkage peaks.


Assuntos
Cromossomos Humanos/genética , Técnicas de Genotipagem/métodos , Judeus/genética , Miopia/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 7/genética , Cromossomos Humanos Par 8/genética , Exoma , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Escore Lod , Masculino , Miopia/etnologia , Linhagem , RNA Longo não Codificante/genética
20.
Carcinogenesis ; 39(9): 1135-1140, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-29924316

RESUMO

To identify genetic variation associated with lung cancer risk, we performed a genome-wide association analysis of 685 lung cancer cases that had a family history of two or more first or second degree relatives compared with 744 controls without lung cancer that were genotyped on an Illumina Human OmniExpressExome-8v1 array. To ensure robust results, we further evaluated these findings using data from six additional studies that were assembled through the Transdisciplinary Research on Cancer of the Lung Consortium comprising 1993 familial cases and 33 690 controls. We performed a meta-analysis after imputation of all variants using the 1000 Genomes Project Phase 1 (version 3 release date September 2013). Analyses were conducted for 9 327 222 SNPs integrating data from the two sources. A novel variant on chromosome 4p15.31 near the LCORL gene and an imputed rare variant intergenic between CDKN2A and IFNA8 on chromosome 9p21.3 were identified at a genome-wide level of significance for squamous cell carcinomas. Additionally, associations of CHRNA3 and CHRNA5 on chromosome 15q25.1 in sporadic lung cancer were confirmed at a genome-wide level of significance in familial lung cancer. Previously identified variants in or near CHRNA2, BRCA2, CYP2A6 for overall lung cancer, TERT, SECISPB2L and RTEL1 for adenocarcinoma and RAD52 and MHC for squamous carcinoma were significantly associated with lung cancer.


Assuntos
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 4 , Cromossomos Humanos Par 9/genética , Humanos , Pulmão/patologia , Anamnese , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA