Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Neuroendocrinology ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852579

RESUMO

INTRODUCTION: Immunoglobulins (Ig) reactive with α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, are present in humans and were previously associated with eating disorders. In this longitudinal study involving patients with anorexia nervosa (AN), we determined whether α-MSH in serum is bound to IgG and analyzed long-term dynamics of both α-MSH peptide and α-MSH-reactive Ig in relation to changes in BMI and gut microbiota composition. METHODS: The study included 64 adolescents with a restrictive form of AN, whose serum samples were collected at hospital admission, discharge, and during a 1-year follow-up visit, and 41 healthy controls, all females. RESULTS: We found that in both study groups, approximately 40% of serum α-MSH was reversibly bound to IgG and that levels of α-MSH-reactive IgG, but not of α-MSH peptide in patients with AN were low at hospital admission, but recovered 1-year later. Total IgG levels were also low at admission. Moreover, BMI-standard deviation score (SDS) correlated positively with α-MSH IgG in both groups studied, but negatively with α-MSH peptide only in controls. Significant correlations between the abundance of specific bacterial taxa in the gut microbiota and α-MSH peptide and IgG levels were found in both study groups, but they were more frequent in controls. CONCLUSION/DISCUSSION: We conclude that IgG in the blood plays a role as an α-MSH binding protein, whose characteristics are associated with BMI in both patients with AN and controls. Furthermore, the study suggests that low production of α-MSH-reactive IgG during the starvation phase in patients with AN may be related to altered gut microbiota composition.

2.
Pharmacol Res ; 205: 107231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815878

RESUMO

We previously demonstrated that mice carrying natural mtDNA variants of the FVB/NJ strain (m.7778 G>T in the mt-Atp8 gene in mitochondrial complex V), namely C57BL/6 J-mtFVB/NJ (B6-mtFVB), exhibited (i) partial protection from experimental skin inflammatory diseases in an anti-murine type VII collagen antibody-induced skin inflammation model and psoriasiform dermatitis model; (ii) significantly altered metabolites, including short-chain fatty acids, according to targeted metabolomics of liver, skin and lymph node samples; and (iii) a differential composition of the gut microbiota according to bacterial 16 S rRNA gene sequencing of stool samples compared to wild-type C57BL/6 J (B6) mice. To further dissect these disease-contributing factors, we induced an experimental antibody-induced skin inflammatory disease in gnotobiotic mice. We performed shotgun metagenomic sequencing of caecum contents and untargeted metabolomics of liver, CD4+ T cell, and caecum content samples from conventional B6-mtFVB and B6 mice. We identified D-glucosamine as a candidate mediator that ameliorated disease severity in experimental antibody-induced skin inflammation by modulating immune cell function in T cells, neutrophils and macrophages. Because mice carrying mtDNA variants of the FVB/NJ strain show differential disease susceptibility to a wide range of experimental diseases, including diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice and collagen antibody-induced arthritis in DBA/1 J mice, this experimental approach is valuable for identifying novel therapeutic options for skin inflammatory conditions and other chronic inflammatory diseases to which mice carrying specific mtDNA variants show differential susceptibility.


Assuntos
DNA Mitocondrial , Camundongos Endogâmicos C57BL , Animais , DNA Mitocondrial/genética , Microbioma Gastrointestinal , Camundongos , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Dermatite/imunologia , Dermatite/microbiologia , Dermatite/genética , Dermatite/tratamento farmacológico , Dermatite/metabolismo , Inflamação/genética , Inflamação/imunologia , Modelos Animais de Doenças , Masculino , Vida Livre de Germes , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/genética , Ceco/microbiologia , Doença Crônica , Feminino
3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876746

RESUMO

Humans harbor diverse communities of microorganisms, the majority of which are bacteria in the gastrointestinal tract. These gut bacterial communities in turn host diverse bacteriophage (hereafter phage) communities that have a major impact on their structure, function, and, ultimately, human health. However, the evolutionary and ecological origins of these human-associated phage communities are poorly understood. To address this question, we examined fecal phageomes of 23 wild nonhuman primate taxa, including multiple representatives of all the major primate radiations. We find relatives of the majority of human-associated phages in wild primates. Primate taxa have distinct phageome compositions that exhibit a clear phylosymbiotic signal, and phage-superhost codivergence is often detected for individual phages. Within species, neighboring social groups harbor compositionally and evolutionarily distinct phageomes, which are structured by superhost social behavior. Captive nonhuman primate phageome composition is intermediate between that of their wild counterparts and humans. Phage phylogenies reveal replacement of wild great ape-associated phages with human-associated ones in captivity and, surprisingly, show no signal for the persistence of wild-associated phages in captivity. Together, our results suggest that potentially labile primate-phage associations have persisted across millions of years of evolution. Across primates, these phylosymbiotic and sometimes codiverging phage communities are shaped by transmission between groupmates through grooming and are dramatically modified when primates are moved into captivity.


Assuntos
Bacteriófagos/patogenicidade , Microbioma Gastrointestinal , Hominidae/virologia , Viroma , Animais , Bacteriófagos/genética , Meio Ambiente , Evolução Molecular , Hominidae/classificação , Hominidae/genética , Hominidae/microbiologia , Filogenia , Comportamento Social
4.
Curr Microbiol ; 80(3): 101, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759384

RESUMO

Most bacterial identification methods require extensive culturing, strain purification and DNA extraction protocols. This leads to additional expenses and time lags when isolating specific bacteria from complex microbiological ecosystems. This study aimed to develop a fast and robust method for identification of lactobacilli, bifidobacteria and Bacteroides in human faecal samples. Bacteria from faecal samples were cultured anaerobically on selective media. Sonication-based DNA extraction was performed, followed by almost complete 16S rRNA gene polymerase chain reaction amplification and MinION sequencing with the Flongle adapter. Sequence analysis was performed using NanoCLUST, while RStudio was used for graphics. For 110 of the 125 colonies investigated, 100% of reads were attributed to a single species, while the remaining 15 colonies consisted of mixtures of up to three different species. The proposed bacterial identification method is advantageous for isolating particular bacteria for which there are no exclusively selective media, as it avoids lengthy colony purification and DNA purification methods, and yields a quick colony identification with high accuracy. Therefore, this method can be used for directly screening for pure cultures of target microorganisms and is suitable for the identification of bacteria in culturomics studies.


Assuntos
Nanoporos , Humanos , RNA Ribossômico 16S/genética , Ecossistema , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA Bacteriano/genética , Análise de Sequência de DNA/métodos
5.
PLoS Biol ; 17(6): e3000298, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216282

RESUMO

Almost all animals and plants are inhabited by diverse communities of microorganisms, the microbiota, thereby forming an integrated entity, the metaorganism. Natural selection should favor hosts that shape the community composition of these microbes to promote a beneficial host-microbe symbiosis. Indeed, animal hosts often pose selective environments, which only a subset of the environmentally available microbes are able to colonize. How these microbes assemble after colonization to form the complex microbiota is less clear. Neutral models are based on the assumption that the alternatives in microbiota community composition are selectively equivalent and thus entirely shaped by random population dynamics and dispersal. Here, we use the neutral model as a null hypothesis to assess microbiata composition in host organisms, which does not rely on invoking any adaptive processes underlying microbial community assembly. We show that the overall microbiota community structure from a wide range of host organisms, in particular including previously understudied invertebrates, is in many cases consistent with neutral expectations. Our approach allows to identify individual microbes that are deviating from the neutral expectation and are therefore interesting candidates for further study. Moreover, using simulated communities, we demonstrate that transient community states may play a role in the deviations from the neutral expectation. Our findings highlight that the consideration of neutral processes and temporal changes in community composition are critical for an in-depth understanding of microbiota-host interactions.


Assuntos
Microbiota , Animais , Humanos , Modelos Teóricos , Plantas , Simbiose
6.
Arch Microbiol ; 204(9): 546, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939214

RESUMO

Two bacterial strains, KH365_2T and KH569_7, were isolated from the cecum contents of wild-derived house mice. The strains were characterized as Gram-negative, rod-shaped, strictly anaerobic, and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both strains were most closely related to Bacteroides uniformis ATCC 8492T. Whole genome sequences of KH365_2T and KH569_7 strains have a DNA G + C content of 46.02% and 46.03% mol, respectively. Most morphological and biochemical characteristics did not differ between the newly isolated strains and classified Bacteroides strains. However, the average nucleotide identity (ANI) and dDNA-DNA hybridization (dDDH) values clearly distinguished the two strains from described members of the genus Bacteroides. Here, we present the phylogeny, morphology, and physiology of a novel species of the genus Bacteroides and propose the name Bacteroides muris sp. nov., with KH365_2T (DSM 114231T = CCUG 76277T) as type strain.


Assuntos
Bacteroides , Gastrópodes , Animais , Técnicas de Tipagem Bacteriana , Bacteroides/genética , Ceco/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Camundongos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Eur Eat Disord Rev ; 30(1): 61-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851002

RESUMO

OBJECTIVE: Knowledge on gut-brain interaction might help to develop new therapies for patients with anorexia nervosa (AN), as severe starvation-induced changes of the microbiome (MI) do not normalise with weight gain. We examine the effects of probiotics supplementation on the gut MI in patients with AN. METHOD: This is a study protocol for a two-centre double-blind randomized-controlled trial comparing the clinical efficacy of multistrain probiotic administration in addition to treatment-as-usual compared to placebo in 60 patients with AN (13-19 years). Moreover, 60 sex- and age-matched healthy controls are included in order to record development-related changes. Assessments are conducted at baseline, discharge, 6 and 12 months after baseline. Assessments include measures of body mass index, psychopathology (including eating-disorder-related psychopathology, depression and anxiety), neuropsychological measures, serum and stool analyses. We hypothesise that probiotic administration will have positive effects on the gut microbiota and the treatment of AN by improvement of weight gain, gastrointestinal complaints and psychopathology, and reduction of inflammatory processes compared to placebo. CONCLUSIONS: If probiotics could help to normalise the MI composition, reduce inflammation and gastrointestinal discomfort and increase body weight, its administration would be a readily applicable additional component of multi-modal AN treatment.


Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Probióticos , Adolescente , Anorexia Nervosa/tratamento farmacológico , Transtornos de Ansiedade , Método Duplo-Cego , Humanos , Probióticos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Gastroenterology ; 159(6): 2130-2145.e5, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805279

RESUMO

BACKGROUND & AIMS: After birth, the immune system matures via interactions with microbes in the gut. The S100 calcium binding proteins S100A8 and S100A9, and their extracellular complex form, S100A8-A9, are found in high amounts in human breast milk. We studied levels of S100A8-A9 in fecal samples (also called fecal calprotectin) from newborns and during infancy, and their effects on development of the intestinal microbiota and mucosal immune system. METHODS: We collected stool samples (n = 517) from full-term (n = 72) and preterm infants (n = 49) at different timepoints over the first year of life (days 1, 3, 10, 30, 90, 180, and 360). We measured levels of S100A8-A9 by enzyme-linked immunosorbent assay and analyzed fecal microbiomes by 16S sRNA gene sequencing. We also obtained small and large intestine biopsies from 8 adults and 10 newborn infants without inflammatory bowel diseases (controls) and 8 infants with necrotizing enterocolitis and measured levels of S100A8 by immunofluorescence microscopy. Children were followed for 2.5 years and anthropometric data and medical information on infections were collected. We performed studies with newborn C57BL/6J wild-type and S100a9-/- mice (which also lack S100A8). Some mice were fed or given intraperitoneal injections of S100A8 or subcutaneous injections of Staphylococcus aureus. Blood and intestine, mesenterial and celiac lymph nodes were collected; cells and cytokines were measured by flow cytometry and studied in cell culture assays. Colon contents from mice were analyzed by culture-based microbiology assays. RESULTS: Loss of S100A8 and S100A9 in mice altered the phenotypes of colonic lamina propria macrophages, compared with wild-type mice. Intestinal tissues from neonatal S100-knockout mice had reduced levels of CX3CR1 protein, and Il10 and Tgfb1 mRNAs, compared with wild-type mice, and fewer T-regulatory cells. S100-knockout mice weighed 21% more than wild-type mice at age 8 weeks and a higher proportion developed fatal sepsis during the neonatal period. S100-knockout mice had alterations in their fecal microbiomes, with higher abundance of Enterobacteriaceae. Feeding mice S100 at birth prevented the expansion of Enterobacteriaceae, increased numbers of T-regulatory cells and levels of CX3CR1 protein and Il10 mRNA in intestine tissues, and reduced body weight and death from neonatal sepsis. Fecal samples from term infants, but not preterm infants, had significantly higher levels of S100A8-A9 during the first 3 months of life than fecal samples from adults; levels decreased to adult levels after weaning. Fecal samples from infants born by cesarean delivery had lower levels of S100A8-A9 than from infants born by vaginal delivery. S100 proteins were expressed by lamina propria macrophages in intestinal tissues from infants, at higher levels than in intestinal tissues from adults. High fecal levels of S100 proteins, from 30 days to 1 year of age, were associated with higher abundance of Actinobacteria and Bifidobacteriaceae, and lower abundance of Gammaproteobacteria-particularly opportunistic Enterobacteriaceae. A low level of S100 proteins in infants' fecal samples associated with development of sepsis and obesity by age 2 years. CONCLUSION: S100A8 and S100A9 regulate development of the intestinal microbiota and immune system in neonates. Nutritional supplementation with these proteins might aide in development of preterm infants and prevent microbiota-associated disorders in later years.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Adulto , Animais , Biópsia , Calgranulina A/administração & dosagem , Calgranulina A/análise , Calgranulina B/análise , Calgranulina B/genética , Pré-Escolar , Colo/microbiologia , Colo/patologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Disbiose/microbiologia , Disbiose/prevenção & controle , Enterocolite Necrosante/epidemiologia , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/prevenção & controle , Fezes/química , Fezes/microbiologia , Feminino , Seguimentos , Microbioma Gastrointestinal/genética , Humanos , Imunidade nas Mucosas , Lactente , Recém-Nascido , Recém-Nascido Prematuro/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/epidemiologia , Obesidade/imunologia , Obesidade/microbiologia , Obesidade/prevenção & controle , RNA Ribossômico 16S/genética , Sepse/epidemiologia , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle
9.
PLoS Pathog ; 15(7): e1007915, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329635

RESUMO

Expression of ABO and Lewis histo-blood group antigens by the gastrointestinal epithelium is governed by an α-1,2-fucosyltransferase enzyme encoded by the Fut2 gene. Alterations in mucin glycosylation have been associated with susceptibility to various bacterial and viral infections. Salmonella enterica serovar Typhimurium is a food-borne pathogen and a major cause of gastroenteritis. In order to determine the role of Fut2-dependent glycans in Salmonella-triggered intestinal inflammation, Fut2+/+ and Fut2-/- mice were orally infected with S. Typhimurium and bacterial colonization and intestinal inflammation were analyzed. Bacterial load in the intestine of Fut2-/- mice was significantly lower compared to Fut2+/+ mice. Analysis of histopathological changes revealed significantly lower levels of intestinal inflammation in Fut2-/- mice compared to Fut2+/+ mice and measurement of lipocalin-2 level in feces corroborated histopathological findings. Salmonella express fimbriae that assist in adherence of bacteria to host cells thereby facilitating their invasion. The std fimbrial operon of S. Typhimurium encodes the π-class Std fimbriae which bind terminal α(1,2)-fucose residues. An isogenic mutant of S. Typhimurium lacking Std fimbriae colonized Fut2+/+ and Fut2-/- mice to similar levels and resulted in similar intestinal inflammation. In vitro adhesion assays revealed that bacteria possessing Std fimbriae adhered significantly more to fucosylated cell lines or primary epithelial cells in comparison to cells lacking α(1,2)-fucose. Overall, these results indicate that Salmonella-triggered intestinal inflammation and colonization are dependent on Std-fucose interaction.


Assuntos
Fímbrias Bacterianas/metabolismo , Fucose/metabolismo , Salmonella typhimurium/patogenicidade , Animais , Aderência Bacteriana , Colite/etiologia , Colite/metabolismo , Colite/microbiologia , Feminino , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Fucosiltransferases/deficiência , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Óperon , Salmonelose Animal/etiologia , Salmonelose Animal/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Galactosídeo 2-alfa-L-Fucosiltransferase
10.
Int J Med Microbiol ; 311(3): 151487, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33662872

RESUMO

The glycosylation profile of the gastrointestinal tract is an important factor mediating host-microbe interactions. Variation in these glycan structures is often mediated by blood group-related glycosyltransferases, and can lead to wide-ranging differences in susceptibility to both infectious- as well as chronic disease. In this review, we focus on the interplay between host glycosylation, the intestinal microbiota and susceptibility to gastrointestinal pathogens based on studies of two exemplary blood group-related glycosyltransferases that are conserved between mice and humans, namely FUT2 and B4GALNT2. We highlight that differences in susceptibility can arise due to both changes in direct interactions, such as bacterial adhesion, as well as indirect effects mediated by the intestinal microbiota. Although a large body of experimental work exists for direct interactions between host and pathogen, determining the more complex and variable mechanisms underlying three-way interactions involving the intestinal microbiota will be the subject of much-needed future research.


Assuntos
Antígenos de Grupos Sanguíneos , Doenças Transmissíveis , Fucosiltransferases , Microbioma Gastrointestinal , N-Acetilgalactosaminiltransferases , Animais , Fucosiltransferases/genética , Trato Gastrointestinal , Humanos , Camundongos , N-Acetilgalactosaminiltransferases/genética , Galactosídeo 2-alfa-L-Fucosiltransferase
11.
Int J Eat Disord ; 54(6): 969-980, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33314258

RESUMO

OBJECTIVE: Gut microbiota are linked to metabolic function, body weight regulation, and brain and behavioral changes. Alteration of gut microbiota is repeatedly demonstrated in adults with anorexia nervosa (AN) and transplantation of stool from adult patients with AN reduces weight gain, food consumption and food efficiency in germ-free mice. No similar data are available for adolescents, who might differ from adults due to their shorter duration of illness. METHOD: Nineteen female adolescent patients with AN at admission and after short-term weight recovery were included in a longitudinal study and compared to 20 healthy controls (HC). DNA was extracted from stool samples and subjected to 16S rRNA gene sequencing and analysis. Group comparisons, indicator genera and simper analysis were applied. Taxon abundances at admission was used to predict inpatient treatment duration. RESULTS: Alpha diversity is increased in patients with AN after short-term weight recovery, while beta diversity shows clear group differences with HC before and after weight gain. A reduction in Romboutsia and taxa belonging to Enterobacteriaceae at both timepoints and an increase in taxa belonging to Lachnospiraceae at discharge are most indicative of patients. Lachnospiraceae abundance at admission helped to predict shorter inpatient treatment duration. DISCUSSION: This pilot study provides first evidence of gut microbiota alterations in adolescent patients with AN that do not normalize with weight gain. If verified in larger studies, the predictive power of taxa belonging to Lachnospiraceae for clinical outcome could complement known predictors at admission, inform clinicians and serve as a target for nutritional interventions.


Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Adolescente , Animais , Anorexia Nervosa/terapia , Feminino , Humanos , Estudos Longitudinais , Camundongos , Projetos Piloto , RNA Ribossômico 16S/genética
12.
Gut ; 69(6): 1064-1075, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31586932

RESUMO

OBJECTIVE: Failing to properly repair damaged DNA drives the ageing process. Furthermore, age-related inflammation contributes to the manifestation of ageing. Recently, we demonstrated that the efficiency of repair of diethylnitrosamine (DEN)-induced double-strand breaks (DSBs) rapidly declines with age. We therefore hypothesised that with age, the decline in DNA damage repair stems from age-related inflammation. DESIGN: We used DEN-induced DNA damage in mouse livers and compared the efficiency of their resolution in different ages and following various permutations aimed at manipulating the liver age-related inflammation. RESULTS: We found that age-related deregulation of innate immunity was linked to altered gut microbiota. Consequently, antibiotic treatment, MyD88 ablation or germ-free mice had reduced cytokine expression and improved DSBs rejoining in 6-month-old mice. In contrast, feeding young mice with a high-fat diet enhanced inflammation and facilitated the decline in DSBs repair. This latter effect was reversed by antibiotic treatment. Kupffer cell replenishment or their inactivation with gadolinium chloride reduced proinflammatory cytokine expression and reversed the decline in DSBs repair. The addition of proinflammatory cytokines ablated DSBs rejoining mediated by macrophage-derived heparin-binding epidermal growth factor-like growth factor. CONCLUSIONS: Taken together, our results reveal a previously unrecognised link between commensal bacteria-induced inflammation that results in age-dependent decline in DNA damage repair. Importantly, the present study support the notion of a cell non-autonomous mechanism for age-related decline in DNA damage repair that is based on the presence of 'inflamm-ageing' cytokines in the tissue microenvironment, rather than an intrinsic cellular deficiency in the DNA repair machinery.


Assuntos
Citocinas/fisiologia , Reparo do DNA , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Envelhecimento/fisiologia , Animais , Antibacterianos/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Dietilnitrosamina/farmacologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata , Fígado/imunologia , Fígado/metabolismo , Camundongos
13.
Blood ; 130(4): 542-553, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28572286

RESUMO

The symbiotic gut microbiota play pivotal roles in host physiology and the development of cardiovascular diseases, but the microbiota-triggered pattern recognition signaling mechanisms that impact thrombosis are poorly defined. In this article, we show that germ-free (GF) and Toll-like receptor-2 (Tlr2)-deficient mice have reduced thrombus growth after carotid artery injury relative to conventionally raised controls. GF Tlr2-/- and wild-type (WT) mice were indistinguishable, but colonization with microbiota restored a significant difference in thrombus growth between the genotypes. We identify reduced plasma levels of von Willebrand factor (VWF) and reduced VWF synthesis, specifically in hepatic endothelial cells, as a critical factor that is regulated by gut microbiota and determines thrombus growth in Tlr2-/- mice. Static platelet aggregate formation on extracellular matrix was similarly reduced in GF WT, Tlr2-/- , and heterozygous Vwf+/- mice that are all characterized by a modest reduction in plasma VWF levels. Defective platelet matrix interaction can be restored by exposure to WT plasma or to purified VWF depending on the VWF integrin binding site. Moreover, administration of VWF rescues defective thrombus growth in Tlr2-/- mice in vivo. These experiments delineate an unexpected pathway in which microbiota-triggered TLR2 signaling alters the synthesis of proadhesive VWF by the liver endothelium and favors platelet integrin-dependent thrombus growth.


Assuntos
Microbioma Gastrointestinal , Fígado/metabolismo , Transdução de Sinais , Trombose/metabolismo , Receptor 2 Toll-Like/metabolismo , Fator de von Willebrand/biossíntese , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Vida Livre de Germes , Fígado/patologia , Camundongos , Camundongos Knockout , Agregação Plaquetária/genética , Trombose/genética , Trombose/patologia , Receptor 2 Toll-Like/genética , Fator de von Willebrand/genética
14.
Gut ; 67(2): 263-270, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-27872184

RESUMO

OBJECTIVE: IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. DESIGN: We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p.Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. RESULTS: CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case-control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p<0.05). CONCLUSIONS: SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients.


Assuntos
Síndrome do Intestino Irritável/enzimologia , Síndrome do Intestino Irritável/genética , Complexo Sacarase-Isomaltase/genética , Complexo Sacarase-Isomaltase/metabolismo , Adulto , Animais , Erros Inatos do Metabolismo dos Carboidratos/genética , Estudos de Casos e Controles , Linhagem Celular , Membrana Celular/enzimologia , Análise Mutacional de DNA , Defecação/genética , Diarreia/etiologia , Éxons , Fezes/microbiologia , Feminino , Dosagem de Genes , Genótipo , Haplorrinos , Humanos , Síndrome do Intestino Irritável/complicações , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Complexo Sacarase-Isomaltase/deficiência , Transfecção
15.
PLoS Comput Biol ; 13(6): e1005361, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640804

RESUMO

The analysis of microbiome compositions in the human gut has gained increasing interest due to the broader availability of data and functional databases and substantial progress in data analysis methods, but also due to the high relevance of the microbiome in human health and disease. While most analyses infer interactions among highly abundant species, the large number of low-abundance species has received less attention. Here we present a novel analysis method based on Boolean operations applied to microbial co-occurrence patterns. We calibrate our approach with simulated data based on a dynamical Boolean network model from which we interpret the statistics of attractor states as a theoretical proxy for microbiome composition. We show that for given fractions of synergistic and competitive interactions in the model our Boolean abundance analysis can reliably detect these interactions. Analyzing a novel data set of 822 microbiome compositions of the human gut, we find a large number of highly significant synergistic interactions among these low-abundance species, forming a connected network, and a few isolated competitive interactions.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Interações Microbianas/fisiologia , Microbiota/fisiologia , Modelos Biológicos , Modelos Estatísticos , Carga Bacteriana/métodos , Carga Bacteriana/estatística & dados numéricos , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Metagenoma , Reconhecimento Automatizado de Padrão
16.
BMC Evol Biol ; 17(1): 187, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806915

RESUMO

BACKGROUND: B4galnt2 is a blood group-related glycosyltransferase that displays cis-regulatory variation for its tissue-specific expression patterns in house mice. The wild type allele, found e.g. in the C57BL/6 J strain, directs intestinal expression of B4galnt2, which is the pattern observed among vertebrates, including humans. An alternative allele class found in the RIIIS/J strain and other mice instead drives expression in blood vessels, which leads to a phenotype similar to type 1 von Willebrand disease (VWD), a common human bleeding disorder. We previously showed that alternative B4galnt2 alleles are subject to long-term balancing selection in mice and that variation in B4galnt2 expression influences host-microbe interactions in the intestine. This suggests that the costs of prolonged bleeding in RIIIS/J allele-bearing mice might be outweighed by benefits associated with resistance against gastrointestinal pathogens. However, the conditions under which such trade-offs could lead to the long-term maintenance of disease-associated variation at B4galnt2 are unclear. RESULTS: To explore the persistence of B4galnt2 alleles in wild populations of house mice, we combined B4galnt2 haplotype frequency data together with a mathematical model based on an evolutionary game framework with a modified Wright-Fisher process. In particular, given the potential for a heterozygote advantage as a possible explanation for balancing selection, we focused on heterozygous mice, which express B4galnt2 in both blood vessels and the gastrointestinal tract. We show that B4galnt2 displays an interesting spatial allelic distribution in Western Europe, likely due to the recent action of natural selection. Moreover, we found that the genotype frequencies observed in nature can be produced by pathogen-driven selection when both heterozygotes and RIIIS/J homozygotes are protected against infection and the fitness cost of bleeding is roughly half that of infection. CONCLUSION: By comparing the results of our models to the patterns of polymorphism at B4galnt2 in natural populations, we are able to recognize the long-term maintenance of the RIIIS/J allele through host-pathogen interactions as a viable hypothesis. Further, our models identify that a putative dominant-, yet unknown protective function of the RIIIS/J allele appears to be more likely than a protective loss of intestinal B4galnt2 expression in RIIIS/J homozygotes.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Doença/genética , N-Acetilgalactosaminiltransferases/genética , Alelos , Animais , Simulação por Computador , Europa (Continente) , Frequência do Gene/genética , Heterozigoto , Humanos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Mutação/genética
17.
PLoS Pathog ; 11(7): e1005008, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26133982

RESUMO

Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase ß-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.


Assuntos
Microbioma Gastrointestinal/genética , Predisposição Genética para Doença/genética , Mucosa Intestinal/microbiologia , N-Acetilgalactosaminiltransferases/biossíntese , Salmonelose Animal/genética , Animais , Ensaio de Imunoadsorção Enzimática , Interações Hospedeiro-Parasita/fisiologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/genética , Reação em Cadeia da Polimerase em Tempo Real , Salmonelose Animal/microbiologia , Salmonella typhimurium , Transfecção
18.
Exp Dermatol ; 26(12): 1221-1227, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28418589

RESUMO

Bullous pemphigoid (BP) is the most common autoimmune blistering disease in Europe. As both the incidence of the disease and the relative proportion of the elderly population continue to rise, it represents a significant medical burden. Whereas some progress has been achieved in defining genetic risk factors for autoimmune blistering diseases, no environmental agent has been conclusively identified. Emerging evidence suggests that host immunity may influence the skin microbiota, while the latter modulates cutaneous immunity. Nevertheless, the relationship between skin microbial communities and autoimmune bullous disease has yet to be studied in humans. Here, we aim to characterise and compare the skin microbiome of patients with BP and healthy, age-matched controls at numerous body sites. Similar to what has been shown in healthy controls, the composition of skin microbiota in patients with BP appears to be very divergent and site specific. Microbial phylum abundances differ between perilesional sites of patients with BP and the same anatomic locations of control patients. A distinct cutaneous microbiota profile, which correlates with BP, further strengthens the significance of commensal-host interaction on our immune system. Moreover, these results raise the possibility that the cutaneous microbiome may contribute to the pathogenesis of BP, with important implications for the treatment of this disease.


Assuntos
Microbiota , Dermatopatias Vesiculobolhosas/microbiologia , Pele/microbiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Proc Natl Acad Sci U S A ; 111(26): E2703-10, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24912178

RESUMO

Understanding the origins of gut microbial community structure is critical for the identification and interpretation of potential fitness-related traits for the host. The presence of community clusters characterized by differences in the abundance of signature taxa, referred to as enterotypes, is a debated concept first reported in humans and later extended to other mammalian hosts. In this study, we provide a thorough assessment of their existence in wild house mice using a panel of evaluation criteria. We identify support for two clusters that are compositionally similar to clusters identified in humans, chimpanzees, and laboratory mice, characterized by differences in Bacteroides, Robinsoniella, and unclassified genera belonging to the family Lachnospiraceae. To further evaluate these clusters, we (i) monitored community changes associated with moving mice from the natural to a laboratory environment, (ii) performed functional metagenomic sequencing, and (iii) subjected wild-caught samples to stable isotope analysis to reconstruct dietary patterns. This process reveals differences in the proportions of genes involved in carbohydrate versus protein metabolism in the functional metagenome, as well as differences in plant- versus meat-derived food sources between clusters. In conjunction with wild-caught mice quickly changing their enterotype classification upon transfer to a standard laboratory chow diet, these results provide strong evidence that dietary history contributes to the presence of enterotype-like clustering in wild mice.


Assuntos
Ração Animal/análise , Bactérias/genética , Dieta , Intestinos/microbiologia , Camundongos/microbiologia , Microbiota/genética , Análise de Variância , Animais , Sequência de Bases , Isótopos de Carbono/análise , Análise por Conglomerados , Primers do DNA/genética , Fezes/microbiologia , França , Alemanha , Fígado/química , Metagenômica/métodos , Dados de Sequência Molecular , Músculo Esquelético/química , Isótopos de Nitrogênio/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
20.
Gut ; 65(2): 238-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25567118

RESUMO

OBJECTIVE: A global increase of IBD has been reported, especially in countries that previously had low incidence rates. Also, the knowledge of the human gut microbiome is steadily increasing, however, limited information regarding its variation on a global scale is available. In the light of the microbial involvement in IBDs, we aimed to (1) identify shared and distinct IBD-associated mucosal microbiota patterns from different geographical regions including Europe (Germany, Lithuania) and South Asia (India) and (2) determine whether profiling based on 16S rRNA transcripts provides additional resolution, both of which may hold important clinical relevance. DESIGN: In this study, we analyse a set of 89 mucosal biopsies sampled from individuals of German, Lithuanian and Indian origins, using bacterial community profiling of a roughly equal number of healthy controls, patients with Crohn's disease and UC from each location, and analyse 16S rDNA and rRNA as proxies for standing and active microbial community structure, respectively. RESULTS: We find pronounced population-specific as well as general disease patterns in the major phyla and patterns of diversity, which differ between the standing and active communities. The geographical origin of samples dominates the patterns of ß diversity with locally restricted disease clusters and more pronounced effects in the active microbial communities. However, two genera belonging to the Clostridium leptum subgroup, Faecalibacteria and Papillibacter, display consistent patterns with respect to disease status and may thus serve as reliable 'microbiomarkers'. CONCLUSIONS: These analyses reveal important interactions of patients' geographical origin and disease in the interpretation of disease-associated changes in microbial communities and highlight the added value of analysing communities on both the 16S rRNA gene (DNA) and transcript (RNA) level.


Assuntos
Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Clostridium/isolamento & purificação , Feminino , Alemanha , Humanos , Índia , Lituânia , Masculino , Microbiota , Pessoa de Meia-Idade , RNA Ribossômico , RNA Ribossômico 16S/análise , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA