Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35649412

RESUMO

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Evolução Molecular , Genes p16 , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Recidiva Local de Neoplasia
2.
Nat Methods ; 21(2): 182-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347140

RESUMO

Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation.


Assuntos
Inteligência Artificial
3.
Nat Methods ; 21(2): 195-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347141

RESUMO

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Semântica
4.
Radiology ; 310(2): e231319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319168

RESUMO

Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered images using nine configurations × three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking.


Assuntos
Processamento de Imagem Assistida por Computador , Radiômica , Humanos , Reprodutibilidade dos Testes , Biomarcadores , Imagem Multimodal
5.
Neuroradiology ; 65(9): 1343-1352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468750

RESUMO

PURPOSE: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas. METHODS: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed. Diagnostic performance of the partial T2-FLAIR mismatch sign was evaluated. Subset analyses were performed to assess associations of imaging markers with overall survival (OS). RESULTS: One hundred twenty-one (5.6%) of 2165 grade 4 gliomas were IDH-mutant. Partial T2-FLAIR mismatch was present in 40 (1.8%) cases, 32 of which were IDH-mutant, yielding 26.4% sensitivity, 99.6% specificity, 80.0% positive predictive value, and 95.8% negative predictive value. Multivariate logistic regression demonstrated IDH mutation was significantly associated with partial T2-FLAIR mismatch (odds ratio [OR] 5.715, 95% CI [1.896, 17.221], p = 0.002), younger age (OR 0.911 [0.895, 0.927], p < 0.001), tumor centered in frontal lobe (OR 3.842, [2.361, 6.251], p < 0.001), absence of multicentricity (OR 0.173, [0.049, 0.612], p = 0.007), and presence of cystic (OR 6.596, [3.023, 14.391], p < 0.001) or non-enhancing solid components (OR 6.069, [3.371, 10.928], p < 0.001). Multivariate Cox analysis demonstrated cystic components (p = 0.024) and non-enhancing solid components (p = 0.003) were associated with longer OS, while older age (p < 0.001), frontal lobe center (p = 0.008), multifocality (p < 0.001), and multicentricity (p < 0.001) were associated with shorter OS. CONCLUSION: Partial T2-FLAIR mismatch sign is highly specific for IDH mutation in WHO grade 4 gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética/métodos , Mutação , Organização Mundial da Saúde
6.
Annu Rev Biomed Eng ; 22: 309-341, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32501772

RESUMO

Central nervous system (CNS) tumors come with vastly heterogeneous histologic, molecular, and radiographic landscapes, rendering their precise characterization challenging. The rapidly growing fields of biophysical modeling and radiomics have shown promise in better characterizing the molecular, spatial, and temporal heterogeneity of tumors. Integrative analysis of CNS tumors, including clinically acquired multi-parametric magnetic resonance imaging (mpMRI) and the inverse problem of calibrating biophysical models to mpMRI data, assists in identifying macroscopic quantifiable tumor patterns of invasion and proliferation, potentially leading to improved (a) detection/segmentation of tumor subregions and (b) computer-aided diagnostic/prognostic/predictive modeling. This article presents a summary of (a) biophysical growth modeling and simulation,(b) inverse problems for model calibration, (c) these models' integration with imaging workflows, and (d) their application to clinically relevant studies. We anticipate that such quantitative integrative analysis may even be beneficial in a future revision of the World Health Organization (WHO) classification for CNS tumors, ultimately improving patient survival prospects.


Assuntos
Biofísica/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Processamento de Imagem Assistida por Computador , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Calibragem , Genoma Humano , Glioma , Humanos , Imageamento por Ressonância Magnética , Modelos Neurológicos , Modelos Teóricos , Neoplasias/metabolismo , Prognóstico
7.
Neuroimage ; 220: 117081, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32603860

RESUMO

Brain extraction, or skull-stripping, is an essential pre-processing step in neuro-imaging that has a direct impact on the quality of all subsequent processing and analyses steps. It is also a key requirement in multi-institutional collaborations to comply with privacy-preserving regulations. Existing automated methods, including Deep Learning (DL) based methods that have obtained state-of-the-art results in recent years, have primarily targeted brain extraction without considering pathologically-affected brains. Accordingly, they perform sub-optimally when applied on magnetic resonance imaging (MRI) brain scans with apparent pathologies such as brain tumors. Furthermore, existing methods focus on using only T1-weighted MRI scans, even though multi-parametric MRI (mpMRI) scans are routinely acquired for patients with suspected brain tumors. In this study, we present a comprehensive performance evaluation of recent deep learning architectures for brain extraction, training models on mpMRI scans of pathologically-affected brains, with a particular focus on seeking a practically-applicable, low computational footprint approach, generalizable across multiple institutions, further facilitating collaborations. We identified a large retrospective multi-institutional dataset of n=3340 mpMRI brain tumor scans, with manually-inspected and approved gold-standard segmentations, acquired during standard clinical practice under varying acquisition protocols, both from private institutional data and public (TCIA) collections. To facilitate optimal utilization of rich mpMRI data, we further introduce and evaluate a novel ''modality-agnostic training'' technique that can be applied using any available modality, without need for model retraining. Our results indicate that the modality-agnostic approach1 obtains accurate results, providing a generic and practical tool for brain extraction on scans with brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Glioma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Bases de Dados Factuais , Aprendizado Profundo , Humanos , Estudos Retrospectivos
8.
Cancer ; 126(11): 2625-2636, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129893

RESUMO

BACKGROUND: Imaging of glioblastoma patients after maximal safe resection and chemoradiation commonly demonstrates new enhancements that raise concerns about tumor progression. However, in 30% to 50% of patients, these enhancements primarily represent the effects of treatment, or pseudo-progression (PsP). We hypothesize that quantitative machine learning analysis of clinically acquired multiparametric magnetic resonance imaging (mpMRI) can identify subvisual imaging characteristics to provide robust, noninvasive imaging signatures that can distinguish true progression (TP) from PsP. METHODS: We evaluated independent discovery (n = 40) and replication (n = 23) cohorts of glioblastoma patients who underwent second resection due to progressive radiographic changes suspicious for recurrence. Deep learning and conventional feature extraction methods were used to extract quantitative characteristics from the mpMRI scans. Multivariate analysis of these features revealed radiophenotypic signatures distinguishing among TP, PsP, and mixed response that compared with similar categories blindly defined by board-certified neuropathologists. Additionally, interinstitutional validation was performed on 20 new patients. RESULTS: Patients who demonstrate TP on neuropathology are significantly different (P < .0001) from those with PsP, showing imaging features reflecting higher angiogenesis, higher cellularity, and lower water concentration. The accuracy of the proposed signature in leave-one-out cross-validation was 87% for predicting PsP (area under the curve [AUC], 0.92) and 84% for predicting TP (AUC, 0.83), whereas in the discovery/replication cohort, the accuracy was 87% for predicting PsP (AUC, 0.84) and 78% for TP (AUC, 0.80). The accuracy in the interinstitutional cohort was 75% (AUC, 0.80). CONCLUSION: Quantitative mpMRI analysis via machine learning reveals distinctive noninvasive signatures of TP versus PsP after treatment of glioblastoma. Integration of the proposed method into clinical studies can be performed using the freely available Cancer Imaging Phenomics Toolkit.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico por imagem , Progressão da Doença , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade
9.
Radiology ; 295(2): 328-338, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32154773

RESUMO

Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue.


Assuntos
Biomarcadores/análise , Processamento de Imagem Assistida por Computador/normas , Software , Calibragem , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Fenótipo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sarcoma/diagnóstico por imagem , Tomografia Computadorizada por Raios X
10.
J Magn Reson Imaging ; 52(1): 54-69, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31456318

RESUMO

Over the past few decades, the advent and development of genomic assessment methods and computational approaches have raised the hopes for identifying therapeutic targets that may aid in the treatment of glioblastoma. However, the targeted therapies have barely been successful in their effort to cure glioblastoma patients, leaving them with a grim prognosis. Glioblastoma exhibits high heterogeneity, both spatially and temporally. The existence of different genetic subpopulations in glioblastoma allows this tumor to adapt itself to environmental forces. Therefore, patients with glioblastoma respond poorly to the prescribed therapies, as treatments are directed towards the whole tumor and not to the specific genetic subregions. Genomic alterations within the tumor develop distinct radiographic phenotypes. In this regard, MRI plays a key role in characterizing molecular signatures of glioblastoma, based on regional variations and phenotypic presentation of the tumor. Radiogenomics has emerged as a (relatively) new field of research to explore the connections between genetic alterations and imaging features. Radiogenomics offers numerous advantages, including noninvasive and global assessment of the tumor and its response to therapies. In this review, we summarize the potential role of radiogenomic techniques to stratify patients according to their specific tumor characteristics with the goal of designing patient-specific therapies. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:54-69.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Genômica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Humanos , Prognóstico
11.
Neuroimage ; 176: 431-445, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730494

RESUMO

Brain extraction from 3D medical images is a common pre-processing step. A variety of approaches exist, but they are frequently only designed to perform brain extraction from images without strong pathologies. Extracting the brain from images exhibiting strong pathologies, for example, the presence of a brain tumor or of a traumatic brain injury (TBI), is challenging. In such cases, tissue appearance may substantially deviate from normal tissue appearance and hence violates algorithmic assumptions for standard approaches to brain extraction; consequently, the brain may not be correctly extracted. This paper proposes a brain extraction approach which can explicitly account for pathologies by jointly modeling normal tissue appearance and pathologies. Specifically, our model uses a three-part image decomposition: (1) normal tissue appearance is captured by principal component analysis (PCA), (2) pathologies are captured via a total variation term, and (3) the skull and surrounding tissue is captured by a sparsity term. Due to its convexity, the resulting decomposition model allows for efficient optimization. Decomposition and image registration steps are alternated to allow statistical modeling of normal tissue appearance in a fixed atlas coordinate system. As a beneficial side effect, the decomposition model allows for the identification of potentially pathological areas and the reconstruction of a quasi-normal image in atlas space. We demonstrate the effectiveness of our approach on four datasets: the publicly available IBSR and LPBA40 datasets which show normal image appearance, the BRATS dataset containing images with brain tumors, and a dataset containing clinical TBI images. We compare the performance with other popular brain extraction models: ROBEX, BEaST, MASS, BET, BSE and a recently proposed deep learning approach. Our model performs better than these competing approaches on all four datasets. Specifically, our model achieves the best median (97.11) and mean (96.88) Dice scores over all datasets. The two best performing competitors, ROBEX and MASS, achieve scores of 96.23/95.62 and 96.67/94.25 respectively. Hence, our approach is an effective method for high quality brain extraction for a wide variety of images.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Humanos , Análise de Componente Principal
12.
Front Neurosci ; 18: 1304191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831756

RESUMO

Introduction: Glioblastoma (GBM) is a highly aggressive malignant tumor of the central nervous system that displays varying molecular and morphological profiles, leading to challenging prognostic assessments. Stratifying GBM patients according to overall survival (OS) from H&E-stained whole slide images (WSI) using advanced computational methods is challenging, but with direct clinical implications. Methods: This work is focusing on GBM (IDH-wildtype, CNS WHO Gr.4) cases, identified from the TCGA-GBM and TCGA-LGG collections after considering the 2021 WHO classification criteria. The proposed approach starts with patch extraction in each WSI, followed by comprehensive patch-level curation to discard artifactual content, i.e., glass reflections, pen markings, dust on the slide, and tissue tearing. Each patch is then computationally described as a feature vector defined by a pre-trained VGG16 convolutional neural network. Principal component analysis provides a feature representation of reduced dimensionality, further facilitating identification of distinct groups of morphology patterns, via unsupervised k-means clustering. Results: The optimal number of clusters, according to cluster reproducibility and separability, is automatically determined based on the rand index and silhouette coefficient, respectively. Our proposed approach achieved prognostic stratification accuracy of 83.33% on a multi-institutional independent unseen hold-out test set with sensitivity and specificity of 83.33%. Discussion: We hypothesize that the quantification of these clusters of morphology patterns, reflect the tumor's spatial heterogeneity and yield prognostic relevant information to distinguish between short and long survivors using a decision tree classifier. The interpretability analysis of the obtained results can contribute to furthering and quantifying our understanding of GBM and potentially improving our diagnostic and prognostic predictions.

13.
Radiol Artif Intell ; : e240225, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984986

RESUMO

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology, and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval. This article presents the perspectives of experts from MICCAI and RSNA on the clinical, cultural, computational, and regulatory considerations-coupled with recommended reading materials-essential to adopt AI technology successfully in radiology and more generally in clinical practice. The report emphasizes the importance of collaboration to improve clinical deployment and highlights the need to integrate clinical and medical imaging data and introduces strategies to ensure smooth and incentivized integration. ©RSNA, 2024.

14.
Sci Rep ; 14(1): 4922, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418494

RESUMO

Glioblastoma is a highly heterogeneous disease, with variations observed at both phenotypical and molecular levels. Personalized therapies would be facilitated by non-invasive in vivo approaches for characterizing this heterogeneity. In this study, we developed unsupervised joint machine learning between radiomic and genomic data, thereby identifying distinct glioblastoma subtypes. A retrospective cohort of 571 IDH-wildtype glioblastoma patients were included in the study, and pre-operative multi-parametric MRI scans and targeted next-generation sequencing (NGS) data were collected. L21-norm minimization was used to select a subset of 12 radiomic features from the MRI scans, and 13 key driver genes from the five main signal pathways most affected in glioblastoma were selected from the genomic data. Subtypes were identified using a joint learning approach called Anchor-based Partial Multi-modal Clustering on both radiomic and genomic modalities. Kaplan-Meier analysis identified three distinct glioblastoma subtypes: high-risk, medium-risk, and low-risk, based on overall survival outcome (p < 0.05, log-rank test; Hazard Ratio = 1.64, 95% CI 1.17-2.31, Cox proportional hazard model on high-risk and low-risk subtypes). The three subtypes displayed different phenotypical and molecular characteristics in terms of imaging histogram, co-occurrence of genes, and correlation between the two modalities. Our findings demonstrate the synergistic value of integrated radiomic signatures and molecular characteristics for glioblastoma subtyping. Joint learning on both modalities can aid in better understanding the molecular basis of phenotypical signatures of glioblastoma, and provide insights into the biological underpinnings of tumor formation and progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Prognóstico , Imageamento por Ressonância Magnética/métodos , Genômica
15.
Sci Data ; 11(1): 254, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424079

RESUMO

Resection and whole brain radiotherapy (WBRT) are standard treatments for brain metastases (BM) but are associated with cognitive side effects. Stereotactic radiosurgery (SRS) uses a targeted approach with less side effects than WBRT. SRS requires precise identification and delineation of BM. While artificial intelligence (AI) algorithms have been developed for this, their clinical adoption is limited due to poor model performance in the clinical setting. The limitations of algorithms are often due to the quality of datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and peritumoral edema 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging information. We used a streamlined approach to database-building through a PACS-integrated segmentation workflow.


Assuntos
Neoplasias Encefálicas , Humanos , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Irradiação Craniana/efeitos adversos , Irradiação Craniana/métodos , Imageamento por Ressonância Magnética , Radiocirurgia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38684319

RESUMO

BACKGROUND: Understanding sex-based differences in glioblastoma patients is necessary for accurate personalized treatment planning to improve patient outcomes. PURPOSE: To investigate sex-specific differences in molecular, clinical and radiological tumor parameters, as well as survival outcomes in glioblastoma, isocitrate dehydrogenase-1 wildtype (IDH1-WT), grade 4 patients. METHODS: Retrospective data of 1832 glioblastoma, IDH1-WT patients with comprehensive information on tumor parameters was acquired from the Radiomics Signatures for Precision Oncology in Glioblastoma (ReSPOND) consortium. Data imputation was performed for missing values. Sex-based differences in tumor parameters, such as, age, molecular parameters, pre-operative KPS score, tumor volumes, epicenter and laterality were assessed through non-parametric tests. Spatial atlases were generated using pre-operative MRI maps to visualize tumor characteristics. Survival time analysis was performed through log-rank tests and Cox proportional hazard analyses. RESULTS: GBM was diagnosed at a median age of 64 years in females compared to 61.9 years in males (FDR = 0.003). Males had a higher Karnofsky Performance Score (above 80) as compared to females (60.4% females Vs 69.7% males, FDR = 0.044). Females had lower tumor volumes in enhancing (16.7 cm3 Vs. 20.6 cm3 in males, FDR = 0.001), necrotic core (6.18 cm3 Vs. 7.76 cm3 in males, FDR = 0.001) and edema regions (46.9 cm3 Vs. 59.2 cm3 in males, FDR = 0.0001). Right temporal region was the most common tumor epicenter in the overall population. Right as well as left temporal lobes were more frequently involved in males. There were no significant differences in survival outcomes and mortality ratios. Higher age, unmethylated O6-methylguanine-DNAmethyltransferase (MGMT) promoter and undergoing subtotal resection increased the mortality risk in both males and females. CONCLUSIONS: Our study demonstrates significant sex-based differences in clinical and radiological tumor parameters of glioblastoma, IDH1-WT, grade 4 patients. Sex is not an independent prognostic factor for survival outcomes and the tumor parameters influencing patient outcomes are identical for males and females. ABBREVIATIONS: IDH1-WT = isocitrate dehydrogenase-1 wildtype; MGMTp = O6-methylguanine-DNA-methyltransferase promoter; KPS = Karnofsky performance score; EOR = extent of resection; WHO = world health organization; FDR = false discovery rate.

17.
ArXiv ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36945687

RESUMO

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

18.
Cancer Res ; 84(5): 741-756, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38117484

RESUMO

Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype. SIGNIFICANCE: Standard treatments are related to loss of DNA methylation in IDHmut glioma, resulting in epigenetic activation of genes associated with tumor progression and alterations in the microenvironment that resemble treatment-naïve IDHwt glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Humanos , Neoplasias Encefálicas/patologia , Epigênese Genética , Epigenômica , Glioma/patologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Recidiva Local de Neoplasia/genética , Microambiente Tumoral
19.
Insights Imaging ; 15(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228979

RESUMO

PURPOSE: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).

20.
Brainlesion ; 13769: 68-79, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928819

RESUMO

Convolutional neural networks (CNNs) have shown promising performance in various 2D computer vision tasks due to availability of large amounts of 2D training data. Contrarily, medical imaging deals with 3D data and usually lacks the equivalent extent and diversity of data, for developing AI models. Transfer learning provides the means to use models trained for one application as a starting point to another application. In this work, we leverage 2D pre-trained models as a starting point in 3D medical applications by exploring the concept of Axial-Coronal-Sagittal (ACS) convolutions. We have incorporated ACS as an alternative of native 3D convolutions in the Generally Nuanced Deep Learning Framework (GaNDLF), providing various well-established and state-of-the-art network architectures with the availability of pre-trained encoders from 2D data. Results of our experimental evaluation on 3D MRI data of brain tumor patients for i) tumor segmentation and ii) radiogenomic classification, show model size reduction by ~22% and improvement in validation accuracy by ~33%. Our findings support the advantage of ACS convolutions in pre-trained 2D CNNs over 3D CNN without pre-training, for 3D segmentation and classification tasks, democratizing existing models trained in datasets of unprecedented size and showing promise in the field of healthcare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA