Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Adv Cancer Res ; 158: 337-385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990536

RESUMO

The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/prevenção & controle
2.
J Endocrinol ; 237(2): 101-111, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507044

RESUMO

Skeletal muscle is a major tissue for glucose metabolism and can store glucose as glycogen, convert glucose to lactate via glycolysis and fully oxidise glucose to CO2 Muscle has a limited capacity for gluconeogenesis but can convert lactate and alanine to glycogen. Gluconeogenesis requires FBP2, a muscle-specific form of fructose bisphosphatase that converts fructose-1,6-bisphosphate (F-1,6-bisP) to fructose-6-phosphate (F-6-P) opposing the activity of the ATP-consuming enzyme phosphofructokinase (PFK). In mammalian muscle, the activity of PFK is normally 100 times higher than FBP2 and therefore energy wasting cycling between PFK and FBP2 is low. In an attempt to increase substrate cycling between F-6-P and F-1,6-bisP and alter glucose metabolism, we overexpressed FBP2 using a muscle-specific adeno-associated virus (AAV-tMCK-FBP2). AAV was injected into the right tibialis muscle of rats, while the control contralateral left tibialis received a saline injection. Rats were fed a chow or 45% fat diet (HFD) for 5 weeks after which, hyperinsulinaemic-euglycaemic clamps were performed. Infection of the right tibialis with AAV-tMCK-FBP2 increased FBP2 activity 10 fold on average in chow and HFD rats (P < 0.0001). Overexpression of FBP2 significantly increased insulin-stimulated glucose uptake in tibialis of chow animals (control 14.3 ± 1.7; FBP2 17.6 ± 1.6 µmol/min/100 g) and HFD animals (control 9.6 ± 1.1; FBP2 11.2 ± 1.1µmol/min/100 g). The results suggest that increasing the capacity for cycling between F-1,6-bisP and F-6-P can increase the metabolism of glucose by introducing a futile cycle in muscle, but this increase is not sufficient to overcome muscle insulin resistance.


Assuntos
Frutose-Bifosfatase/genética , Glucose/metabolismo , Músculo Esquelético/metabolismo , Animais , Dieta Hiperlipídica , Frutose-Bifosfatase/metabolismo , Frutosefosfatos/metabolismo , Regulação Enzimológica da Expressão Gênica , Gluconeogênese/genética , Glicogênio/metabolismo , Resistência à Insulina/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Ratos , Ratos Transgênicos , Ratos Wistar , Regulação para Cima/genética
3.
Sci Rep ; 8(1): 13967, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228369

RESUMO

Increased lipid metabolism in muscle is associated with insulin resistance and therefore, many strategies have been employed to alter fatty acid metabolism and study the impact on insulin action. Metabolism of fatty acid requires activation to fatty acyl CoA by Acyl CoA synthases (ACSL) and fatty acyl CoA can be hydrolysed by Acyl CoA thioesterases (Acot). Thioesterase activity is low in muscle, so we overexpressed Acot7 in muscle of chow and high-fat diet (HFD) rats and investigated effects on insulin action. Acot7 overexpression modified specific phosphatidylcholine and phosphatidylethanolamine species in tibialis muscle of chow rats to levels similar to those observed in control HFD muscle. The changes in phospholipid species did not alter glucose uptake in tibialis muscle under hyperinsulinaemic/euglycaemic clamped conditions. Acot7 overexpression in white extensor digitorum longus (EDL) muscle increased complete fatty acid oxidation ex-vivo but was not associated with any changes in glucose uptake in-vivo, however overexpression of Acot7 in red EDL reduced insulin-stimulated glucose uptake in-vivo which correlated with increased incomplete fatty acid oxidation ex-vivo. In summary, although overexpression of Acot7 in muscle altered some aspects of lipid profile and metabolism in muscle, this had no major effect on insulin-stimulated glucose uptake.


Assuntos
Glucose/metabolismo , Resistência à Insulina , Insulina/farmacologia , Lipídeos/análise , Músculo Esquelético/enzimologia , Palmitoil-CoA Hidrolase/metabolismo , Fosfolipídeos/metabolismo , Acil Coenzima A/metabolismo , Animais , Humanos , Hipoglicemiantes/farmacologia , Masculino , Oxirredução , Palmitoil-CoA Hidrolase/genética , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA